该文研究了$\Bbb R ^n$中Laplace算子在有界域$\Omega$上的Dirichlet 特征值和的下界.众所周知:第$k$个Dirichlet特征值$\lambda_k(\Omega)$服从Weyl渐近公式,即 $ \lambda_k(\Omega)\sim\frac{4\pi^2}{[\omega_nV(\Omega)]^\frac{2}{n}}k^\frac{2}{n} \qquad\hbox{当}\,\,k\rightarrow\infty\,\,\hbox{时}, $ 其中$\omega_n$和$V(\Omega)$分别为是$\Bbb R ^n$中$n$维单位球的体积和$\Omega$的体积.根据上述公式,Pólya猜测 $ \lambda_k(\Omega)\geq\frac{4\pi^2}{[\omega_nV(\Omega)]^\frac{2}{n}}k^\frac{2}{n}, \quad\forall\,\,k\in{\Bbb N}. $ 这就是著名的Pólya猜想.对这一问题的研究由来已久,已有很多的工作.特别是,近几十年来最显著的成就之一是由Berezin[4], 以及李伟光和丘成桐[3] 分别独立取得的.他们部分解决了Pólya猜想,只是多了一个因子$n/(n+2)$.后来, Melas[7] 改进了Berezin-Li-Yau的估计,在不等式右边增加了一个正的$k$阶项. 该文采用与 Melas几乎相同的论证,进一步完善了 Melas 的估计.