数学物理学报 ›› 2023, Vol. 43 ›› Issue (1): 69-81.
收稿日期:
2021-01-13
修回日期:
2022-09-22
出版日期:
2023-02-26
发布日期:
2023-03-07
作者简介:
单远, E-mail: 基金资助:
Received:
2021-01-13
Revised:
2022-09-22
Online:
2023-02-26
Published:
2023-03-07
Supported by:
摘要:
该文主要研究Dirac方程周期解的存在性和多重性. 通过引入相对Morse指标对相应的线性Dirac方程进行分类, 并给出解存在的扭转性条件.
中图分类号:
单远. 渐近线性Dirac方程的相对Morse指标及其多解性[J]. 数学物理学报, 2023, 43(1): 69-81.
Shan Yuan. Relative Morse Index and Multiple Solutions for Asymptotically Linear Dirac Equation[J]. Acta mathematica scientia,Series A, 2023, 43(1): 69-81.
[1] | Abbondandolo A. Morse Theory for Hamiltonian Systems. London: Chapman Hall, 2001 |
[2] |
Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14: 349-381
doi: 10.1016/0022-1236(73)90051-7 |
[3] |
Bartsch T, Ding Y. Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math Nachr, 2006, 279: 1267-1288
doi: 10.1002/mana.200410420 |
[4] | Chen C, Hu X. Maslov index for homoclinic orbits of Hamiltonian systems. Ann Inst H Poincaré Anal Non Linaire, 2007, 24: 589-603 |
[5] |
Conley C, Zehnder E. Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Comm Pure Appl Math, 1984, 37: 207-253
doi: 10.1002/cpa.3160370204 |
[6] |
Ding Y. Index theory for linear selfadjoint operator equations and nontrivial solutions for asymptotically linear operator equations. Calc Var Partial Differential Equations, 2010, 38: 75-109
doi: 10.1007/s00526-009-0279-5 |
[7] |
Ding Y. Infinitely many solutions for a class of nonlinear Dirac equations without symmetry. Nonlinear Anal, 2009, 70: 921-935
doi: 10.1016/j.na.2008.01.022 |
[8] |
Ding Y. Semi-classical ground states concerntrating on the nonlinear potential for a Dirac equation. J Differential Equations, 2010, 249: 1015-1034
doi: 10.1016/j.jde.2010.03.022 |
[9] |
Ding Y, Liu X. Semi-classical limits of ground states of a nonlinear Dirac equation. J Differential Equations, 2012, 252: 4962-4987
doi: 10.1016/j.jde.2012.01.023 |
[10] |
Ding Y, Liu X. Periodic waves of nonlinear Dirac equations. Nonlinear Anal, 2014, 109: 252-267
doi: 10.1016/j.na.2014.06.015 |
[11] |
Ding Y, Liu X. Periodic solutions of a Dirac equation with concave and convex nonlinearities. J Differential Equations, 2015, 258: 3567-3588
doi: 10.1016/j.jde.2015.01.013 |
[12] |
Ding Y, Liu X. Periodic solutions of an asymptotically linear Dirac equation. Annali di Matematica, 2017, 196: 717-735
doi: 10.1007/s10231-016-0592-5 |
[13] |
Ding Y, Ruf B. Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities. SIAM J Math Anal, 2012, 44: 3755-3785
doi: 10.1137/110850670 |
[14] | Ding Y, Ruf B. Solutions of a nonlinear Dirac equation with external fields. Arch Ration Mech Anal, 2008, 190: 1007-1032 |
[15] | Ding Y, Shan Y. Index theory for linear selfadjoint operator equations and nontrivial solutions for asymptotically linear operator equations (II). arXiv:1104.1670v1 |
[16] |
Ding Y, Wei J. Stationary states of nonlinear Dirac equations with general potentials. Rev Math Phys, 2008, 20: 1007-1032
doi: 10.1142/S0129055X0800350X |
[17] | Ekeland I. Une theorie de Morse pour les systemes hamiltoniens convexes. Ann Inst H Poincaré Anal Non Linaire, 1984, 1: 19-78 |
[18] | Esteban M, Séré E. An overview on linear and nonlinear Dirac equations. Discrete Contin Dyn Syst, 2002, 8: 281-397 |
[19] |
Esteban M, Séré E. Stationary states of the nonlinear Dirac equation: a variational approach. Commun Math Phys, 1995, 171: 323-350
doi: 10.1007/BF02099273 |
[20] | Li G B, Zhou H S. The existence of a positive solution to a asymptotically linear scalar field equations. Proc R Soc Edinburgh Ser A, 2000, 130: 81-105 |
[21] |
Liu C. Maslov-type index theory for symplectic paths with Lagrangian boundary conditions. Adv Nonlinear Stud, 2007, 7: 131-161
doi: 10.1515/ans-2007-0107 |
[22] |
Liu C. A note on the relations between the various index theories. J Fixed Point Theory Appl, 2017, 19: 617-648
doi: 10.1007/s11784-016-0368-y |
[23] | Long Y. A Maslov-type index theory for symplectic paths. Topol Methods Nonlinear Anal, 1997, 10: 47-78 |
[24] | Long Y. Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems. Sci China, 1990, 33: 1409-1419 |
[25] | Long Y, Zehnder E. Morse theory for forced oscillations of asymptotically linear Hamiltonian systems// Alberverio S, et al. Stochastic Processes, Phiscs and Geometry. Teaneck: World Scientific, 1990: 528-563 |
[26] | Long Y, Zhu C. Maslov type index theory for symplectic paths and spectral flow (II). Chin Ann Math, 2000, 21B: 89-108 |
[27] | Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Providence, RI: American Mathematical Society, 1986 |
[28] | Ranada A F. Classical nonlinear dirac field models of extended particles//Barut A O. Quantum Theory, Groups, Fields and Particles. Reidel: Amsterdam, 1982 |
[29] |
Shan Y. Morse index and multiple solutions for the asymptotically linear Schrödinger type equation. Nonlinear Anal, 2013, 89: 170-178
doi: 10.1016/j.na.2013.05.014 |
[30] |
Shan Y. A twist condition and multiple solutions of unbounded self-adjoint operator equation with symmetries. J Math Anal Appl, 2014, 410: 597-606
doi: 10.1016/j.jmaa.2013.08.067 |
[31] | Struwe M. Variational Methods:Applications to Nonlinear Partifal Differential Equations and Hamiltonian Systems. New York: Springer, 1990 |
[32] | Thaller B. The Dirac Equation, Texts and Monographs in Physics. Berlin: Springer, 1992 |
[33] |
Wang Q, Liu C. A new index theory for linear self-adjoint operator equations and its applications. J Differential Equations, 2016, 260: 3749-3784
doi: 10.1016/j.jde.2015.10.046 |
[34] | Zhu C, Long Y. Maslov type index theory for symplectic paths and spectral flow (I). Chin Ann Math, 1999, 20B: 413-424 |
[1] | 冯美强, 张学梅. Monge-Ampère方程边界爆破解的最优估计和不存在性[J]. 数学物理学报, 2023, 43(1): 181-202. |
[2] | 薛艳昉, 朱新才. 一类拟线性薛定谔方程的多解性[J]. 数学物理学报, 2023, 43(1): 93-100. |
[3] | 李安然,樊丹丹,魏重庆. 临界零质量Kirchhoff型方程的解及其渐近行为[J]. 数学物理学报, 2022, 42(6): 1729-1743. |
[4] | 刘丽平,彭建文. 求解变分不等式和不动点问题的公共元的修正次梯度外梯度算法[J]. 数学物理学报, 2022, 42(5): 1517-1536. |
[5] | 段誉,孙歆. 渐近线性Klein-Gordon-Maxwell系统正解的存在性[J]. 数学物理学报, 2022, 42(4): 1103-1111. |
[6] | 吉蕾,廖家锋. 一类带临界指数的Kirchhoff型问题正基态解的存在性[J]. 数学物理学报, 2022, 42(2): 418-426. |
[7] | 李强. 大范围分析中Fredholm算子的广义横截性定理[J]. 数学物理学报, 2021, 41(5): 1263-1269. |
[8] | 史平. 一类抽象二元非线性算子的不动点的存在性与唯一性[J]. 数学物理学报, 2020, 40(4): 882-890. |
[9] | 张晶. 一类次临界Bose-Einstein凝聚型方程组的渐近收敛行为和相位分离[J]. 数学物理学报, 2019, 39(3): 441-450. |
[10] | 罗雪萍, 崔梦天. 自反巴拿赫空间中方向扰动的广义混合变分不等式的可解性[J]. 数学物理学报, 2018, 38(6): 1144-1152. |
[11] | 朴勇杰. 度量空间上 |
[12] | 张申贵. 带类p(x)-拉普拉斯算子的双非局部问题的无穷多解[J]. 数学物理学报, 2018, 38(3): 514-526. |
[13] | 刘英. 扩展到无弱序列连续对偶映射Banach空间的关于变分包含与不动点问题的广义迭代算法[J]. 数学物理学报, 2018, 38(2): 244-263. |
[14] | 张石生, 刘振海, 温庆丰, 唐金芳. 与渐进非扩张半群不动点问题有关的分裂变分包含问题及其对最优化问题的应用[J]. 数学物理学报, 2018, 38(2): 231-243. |
[15] | 宋际平, 王茂发. 偏序偏度量空间中有理分式型广义弱压缩的公共不动点结果[J]. 数学物理学报, 2017, 37(3): 401-415. |
|