数学物理学报 ›› 2023, Vol. 43 ›› Issue (1): 43-52.

• • 上一篇    下一篇

关于广义 Douglas-Weyl 喷射的一个注记

郑大小()   

  1. 安徽师范大学数学与统计学院 安徽芜湖 241002
  • 收稿日期:2022-03-07 修回日期:2022-07-22 出版日期:2023-02-26 发布日期:2023-03-07
  • 作者简介:郑大小, E-mail: 2015046@ahnu.edu.cn
  • 基金资助:
    安徽省自然科学青年基金(2008085QA05)

A Note on Generalized Douglas-Weyl Spray

Zheng Daxiao()   

  1. Department of Mathematics and Statistics Science, Anhui Normal University, Anhui Wuhu 241002
  • Received:2022-03-07 Revised:2022-07-22 Online:2023-02-26 Published:2023-03-07
  • Supported by:
    The AHNSF(2008085QA05)

摘要:

该文研究广义 Douglas-Weyl 喷射. 证明了一个喷射 $G$ 是广义 Douglas-Weyl 喷射当且仅当它的 Weyl 张量是二次型的. 由此得到一个推论, 一个芬斯勒度量是广义Douglas-Weyl 度量当且仅当它的 Weyl 张量是二次型的. 进一步, 该文研究具有二次型的黎曼曲率张量的喷射, 证明了一个喷射具有二次型的黎曼曲率张量当且仅当 $\dot{B}^{~i}_{j~kl}=0$.

关键词: 喷射, Weyl张量, Douglas张量

Abstract:

In this paper, we study Generalized Douglas-Weyl spray. We show that a spray $G$ is a Generalized Douglas-Weyl spray if and only if it is $W$-quadratic. As a corollary, we show that a Finsler metric $F$ is a Generalized Douglas-Weyl metric if and only if it is $W$-quadratic. Furthermore, we consider $R$-quadratic spray and prove that a spray $G$ is $R$-quadratic if and only if $\dot{B}^{~i}_{j~kl}=0$.

Key words: Spray, Weyl curvature, Douglas Tensor

中图分类号: 

  • O184