数学物理学报 ›› 2023, Vol. 43 ›› Issue (1): 132-142.
收稿日期:
2022-05-15
修回日期:
2022-08-05
出版日期:
2023-02-26
发布日期:
2023-03-07
通讯作者:
*周国全, E-mail: 基金资助:
Received:
2022-05-15
Revised:
2022-08-05
Online:
2023-02-26
Published:
2023-03-07
Supported by:
摘要:
修正的非线性薛定谔方程(MNLS方程)与导数非线性薛定谔方程(DNLS 方程)是两个紧密相关且完全可积的非线性偏微分方程. 该文通过Hirota双线性导数变换方法, 首先求得MNLS 方程在平面简谐波背景下的空间周期解, 即Akhmediev型呼吸子解, 再通过长波极限得其Rogue波解. 根据简单的参数归零法使之自然地约化为DNLS 方程的Rogue波解, 并借助于一个积分变换将其变换为Chen-Lee-Liu方程的Rogue波解. 文章还简要讨论了MNLS方程和DNLS 方程在非局域情形整体解的存在性问题.
中图分类号:
唐宇轩, 周国全. 用Hirota 双线性导数变换求MNLS 方程的Rogue 波解[J]. 数学物理学报, 2023, 43(1): 132-142.
Tang Yuxuan, Zhou Guoquan. The Rogue Wave Solution of MNLS Equation Based on Hirota's Bi-linear Derivative Transformation[J]. Acta mathematica scientia,Series A, 2023, 43(1): 132-142.
[1] |
Akhmediev N, Ankiewicz A, Taki M. Waves that appear from nowhere and disappear without a trace. Physics Letters A, 2009, 373(6): 675-678
doi: 10.1016/j.physleta.2008.12.036 |
[2] |
Akhmediev N, Soto-Crespo J M, Ankiewicz A. Extreme waves that appear from nowhere: on the nature of rogue waves. Physics Letters A, 2009, 373(25): 2137-2145
doi: 10.1016/j.physleta.2009.04.023 |
[3] |
Wen X Y, Yang Y, Yan Z. Generalized perturbation $(n, M)$-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation. Physical Review E, 2015, 92(1): 012917
doi: 10.1103/PhysRevE.92.012917 |
[4] |
Pan C, Bu L, Chen S, et al. General rogue wave solutions under SU (2) transformation in the vector Chen-Lee-Liu nonlinear Schrödinger equation. Physica D: Nonlinear Phenomena, 2022, 434: 133204
doi: 10.1016/j.physd.2022.133204 |
[5] |
He J, Xu S, Cheng Y. The rational solutions of the mixed nonlinear Schrödinger equation. AIP Advances, 2015, 5(1): 017105
doi: 10.1063/1.4905701 |
[6] |
Zhao L C, Guo B, Ling L. High-order rogue wave solutions for the coupled nonlinear Schrödinger equations-II. Journal of Mathematical Physics, 2016, 57(4): 043508
doi: 10.1063/1.4947113 |
[7] |
Ankiewicz A, Akhmediev N. Rogue wave solutions for the infinite integrable nonlinear Schrödinger equation hierarchy. Physical Review E, 2017, 96(1): 012219
doi: 10.1103/PhysRevE.96.012219 |
[8] |
Xu S, He J, Wang L. The Darboux transformation of the derivative nonlinear Schrödinger equation. Journal of Physics A: Mathematical and Theoretical, 2011, 44(30): 305203
doi: 10.1088/1751-8113/44/30/305203 |
[9] |
Guo B, Ling L, Liu Q P. High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations. Studies in Applied Mathematics, 2013, 130(4): 317-344
doi: 10.1111/j.1467-9590.2012.00568.x |
[10] |
Zhang Y, Guo L, Xu S, et al. The hierarchy of higher order solutions of the derivative nonlinear Schrödinger equation. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(6): 1706-1722
doi: 10.1016/j.cnsns.2013.10.005 |
[11] |
Wang L H, Porsezian K, He J S. Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation. Physical Review E, 2013, 87(5): 053202
doi: 10.1103/PhysRevE.87.053202 |
[12] |
Lou S, Lin J. Rogue waves in nonintegrable KdV-type systems. Chinese Physics Letters, 2018, 35(5): 050202
doi: 10.1088/0256-307X/35/5/050202 |
[13] |
Wu H, Fei J, Ma W. Lump and rational solutions for weakly coupled generalized Kadomtsev-Petviashvili equation. Modern Physics Letters B, 2021, 35(26): 2150449
doi: 10.1142/S0217984921504492 |
[14] |
Zhou G, Li X. Space periodic solutions and rogue wave solution of the derivative nonlinear Schrödinger equation. Wuhan University Journal of Natural Sciences, 2017, 22(5): 373-379
doi: 10.1007/s11859-017-1261-2 |
[15] |
Ma W X. Nonlocal PT-symmetric integrable equations and related Riemann-Hilbert problems. Partial Differential Equations in Applied Mathematics, 2021, 4: 100190
doi: 10.1016/j.padiff.2021.100190 |
[16] |
Ablowitz M J, Musslimani Z H. Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity, 2016, 29(3): 915
doi: 10.1088/0951-7715/29/3/915 |
[17] |
Yang B, Yang J. Rogue waves in the nonlocal ${\mathcal {PT}} $ PT-symmetric nonlinear Schrödinger equation. Letters in Mathematical Physics, 2019, 109(4): 945-973
doi: 10.1007/s11005-018-1133-5 |
[18] |
Lin J, Jin X W, Gao X L, et al. Solitons on a periodic wave background of the modified KdV-Sine-Gordon equation. Communications in Theoretical Physics, 2018, 70(2): 119-126
doi: 10.1088/0253-6102/70/2/119 |
[19] |
Li L, Duan C, Yu F. An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg-de Vries (MKdV) equation. Physics Letters A, 2019, 383(14): 1578-1582
doi: 10.1016/j.physleta.2019.02.031 |
[20] |
Zhong W P, Yang Z, Beli${\rm\acute{c}}$ M, et al. Breather solutions of the nonlocal nonlinear self-focusing Schrödinger equation. Physics Letters A, 2021, 395: 127228
doi: 10.1016/j.physleta.2021.127228 |
[21] |
Ma W X, Zhou R. A coupled AKNS-Kaup-Newell soliton hierarchy. Journal of Mathematical Physics, 1999, 40(9): 4419-4428
doi: 10.1063/1.532976 |
[22] |
Chen Z Y, Huang N N. Explicit N-soliton solution of the modified nonlinear Schrödinger equation. Physical Review A, 1990, 41(7): 4066-4069
doi: 10.1103/PhysRevA.41.4066 |
[23] |
Huang N N, Chen Z Y. Alfven solitons. Journal of Physics A: Mathematical and General, 1990, 23(4): 439-453
doi: 10.1088/0305-4470/23/4/014 |
[24] |
Chen H H, Lee Y C, Liu C S. Integrability of nonlinear Hamiltonian systems by inverse scattering method. Physica Scripta, 1979, 20(3/4): 490-492
doi: 10.1088/0031-8949/20/3-4/026 |
[25] |
Kaup D J, Newell A C. An exact solution for a derivative nonlinear Schrödinger equation. Journal of Mathematical Physics, 1978, 19(4): 798-801
doi: 10.1063/1.523737 |
[26] |
Kawata T, Inoue H. Exact solution of derivative nonlinear Schrödinger equation under nonvanishing conditions. J Phys Soc Jpn, 1978, 44(6): 1968-1976
doi: 10.1143/JPSJ.44.1968 |
[27] |
Steudel H. The hierarchy of multi-soliton solutions of derivative nonlinear Schrödinger equation. J Phys A, 2003, 36: 1931-1946
doi: 10.1088/0305-4470/36/7/309 |
[28] |
Zhou G Q, Huang N N. An $N$-soliton solution to the DNLS equation based on revised inverse scattering transform. Journal of Physics A: Mathematical and Theoretical, 2007, 40(45): 13607-13623
doi: 10.1088/1751-8113/40/45/008 |
[29] |
Zhou G. A multi-soliton solution of the DNLS equation based on pure Marchenko formalism. Wuhan University Journal of Natural Sciences, 2010, 15(1): 36-42
doi: 10.1007/s11859-010-0108-x |
[30] |
Zhou G, Bi X. Soliton solution of the DNLS equation based on Hirota's bilinear derivative transform. Wuhan University Journal of Natural Sciences, 2009, 14(6): 505-510
doi: 10.1007/s11859-009-0609-7 |
[31] | 蔡浩. 关于MNLS方程和DNLS方程的研究. 武汉大学, 2005 |
Cai H. Research about MNLS Equation and DNLS Equation. Wuhan Univ, 2005 | |
[32] |
Chen X J, Lam W K. Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Physical Review E, 2004, 69(6): 066604
doi: 10.1103/PhysRevE.69.066604 |
[33] |
Chen X J, Yang J K, Lam W K. $N$-soliton solution for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Journal of Physics A: Math Gen, 2006, 39(13): 3263-3274
doi: 10.1088/0305-4470/39/13/006 |
[34] |
Lashkin V M. $N$-soliton solutions and perturbation theory for DNLS with nonvanishing condition. J Phys A, 2007, 40: 6119-6132
doi: 10.1088/1751-8113/40/23/008 |
[35] |
Zhou G. A newly revised inverse scattering transform for DNLS+ equation under nonvanishing boundary condition. Wuhan University Journal of Natural Sciences, 2012, 17(2): 144-150
doi: 10.1007/s11859-012-0819-2 |
[36] |
Zhou G. Explicit breather-type and pure N-Soliton solution of DNLS+ equation with nonvanishing boundary condition. Wuhan University Journal of Natural Sciences, 2013, 18(2): 147-155
doi: 10.1007/s11859-013-0907-y |
[37] |
Osman M S, Almusawa H, Tariq K U, et al. On global behavior for complex soliton solutions of the perturbed nonlinear Schrödinger equation in nonlinear optical fibers. Journal of Ocean Engineering and Science, 2022, 7(5): 431-443
doi: 10.1016/j.joes.2021.09.018 |
[38] | Bourgain J. Global Solutions of Nonlinear Schrödinger Equations. Providence, RI: American Mathematical Society, 1999 |
[1] | 李敏, 蒲学科. 双流体 Euler-Poisson 方程的长波长极限[J]. 数学物理学报, 2023, 43(2): 399-420. |
[2] | 熊晨, 高琦. 一类耦合Ginzburg-Landau系统的局部极小解[J]. 数学物理学报, 2023, 43(2): 321-340. |
[3] | 安雁宁, 刘文军, 孔奥文. 带分数阶磁效应的压电梁在有/无热效应时的稳定性[J]. 数学物理学报, 2023, 43(2): 355-376. |
[4] | 康笑东, 范虹霞. 一类具有瞬时脉冲的二阶发展方程的近似可控性[J]. 数学物理学报, 2023, 43(2): 421-432. |
[5] | 曾彪. 一类带有弱连续算子的发展方程的最优控制[J]. 数学物理学报, 2023, 43(2): 515-530. |
[6] | 张明玉. 输运系数依赖温度的可压缩辐射流体解的整体存在性[J]. 数学物理学报, 2023, 43(2): 458-480. |
[7] | 陈雪姣, 李远飞, 侯春娟. 半无穷柱体上Forchheimer方程组解的Phragmén-Lindelöf型二择一结果[J]. 数学物理学报, 2023, 43(2): 505-514. |
[8] | 侍迎春, 赖耕. 球对称 Chaplygin 气体相对论 Euler 方程组的奇性形成[J]. 数学物理学报, 2023, 43(2): 481-490. |
[9] | 李德科, 王青选. 质量临界非齐次薛定谔方程在门槛值处的极限行为[J]. 数学物理学报, 2023, 43(1): 123-131. |
[10] | 赵倩, 闫璐. 非局部 KP -型方程的广义双线性导数[J]. 数学物理学报, 2023, 43(1): 143-158. |
[11] | 佟玉霞, 郭艳敏, 谷建涛. 一类椭圆障碍问题弱解梯度的全局 BMO 估计[J]. 数学物理学报, 2023, 43(1): 159-168. |
[12] | 林杰, 王天怡. 三维柱对称定常非齐次不可压 Euler 方程管道问题解的适定性及无穷远渐近速率[J]. 数学物理学报, 2023, 43(1): 219-237. |
[13] | 欧阳柏平. 非线性记忆项的Euler-Poisson-Darboux-Tricomi方程解的爆破[J]. 数学物理学报, 2023, 43(1): 169-180. |
[14] | 刘甲玉,魏含玉,张燕,夏铁成,王惠. 阿尔法螺旋蛋白中三分量四阶非线性Schrödinger系统孤子解及其非线性动力行为研究[J]. 数学物理学报, 2022, 42(6): 1873-1885. |
[15] | 胡振祥,聂麟飞. 具有水平传播和环境传播的反应扩散传染病模型研究[J]. 数学物理学报, 2022, 42(6): 1849-1860. |
|