[1] |
Alikakos A D. An application of the invariance principle to reaction-diffusion equations. J Differential Equations, 1979, 33: 201-225
doi: 10.1016/0022-0396(79)90088-3
|
[2] |
Babin A V, Vishik M I. Attractors of Evolution Equations. Amsterdam: North-Holland, 1992
|
[3] |
Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer, 2011
|
[4] |
Cao D M, Sun C Y, Yang M H. Dynamics for a stochastic reaction-diffusion equation with additive noise. J Differential Equations, 2015, 259: 838-872
doi: 10.1016/j.jde.2015.02.020
|
[5] |
Cholewa J W, Dlotko T. Global Attractors in Abstract Parabolic Problems. Cambridge: Cambridge university Press, 2000
|
[6] |
Hale J K. Asymptotic Behavior of Dissipative Systems. Providence: American Mathematival Society, 1988
|
[7] |
Lions J L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Paris: Dunod, 1969
|
[8] |
Marion M. Attractors for reactions-diffusion equations: existence and estimate of their dimension. Appl Anal, 1987, 25: 101-147
doi: 10.1080/00036818708839678
|
[9] |
Marion M. Approximate inertial manifolds for reaction-diffusion equations in high space dimension. J Dynamic Differential Equations, 1989, 1: 245-267
doi: 10.1007/BF01053928
|
[10] |
Robinson J C. Infinite-Dimensional Dynamical Systems:An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge: Cambridge University Press, 2001
|
[11] |
Sun C Y, Yuan L L, Shi J C. Higher-order integrability for a semilinear reaction-diffusion equation with distribution derivatives in $\Bbb R ^{N}$. Appl Math Lett, 2013, 26: 949-956
doi: 10.1016/j.aml.2013.04.010
|
[12] |
Sun C Y, Yuan Y B. $L^{p}$ -type pullback attractors for a semilinear heat equation on time-varying domains. Proc Roy Soc Edinburgh Sect A, 2015, 145: 1029-1052
doi: 10.1017/S0308210515000177
|
[13] |
Sun C Y, Zhong C K. Attractors for the semilinear reaction-diffusion equation with distribution derivatives in unbounded domains. Nonlinear Anal, 2005, 63: 49-65
doi: 10.1016/j.na.2005.04.034
|
[14] |
Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer, 1997
|
[15] |
Wang B. Attractors for reaction-diffusion equations in unbounded domains. Physica D, 1999, 128: 41-52
doi: 10.1016/S0167-2789(98)00304-2
|
[16] |
Xiao Y P, Sun C Y. Higher-order asymptotic attraction of pullback attractors for a reaction-diffusion equation in non-cylindrical domains. Nonlinear Anal, 2015, 113: 309-322
doi: 10.1016/j.na.2014.10.012
|
[17] |
Xie Y Q, Li Q S, Huang C X, Jiang Y J. Aattractors for the semilinear reaction-diffusion equation with distribution derivatives. J Math Phys, 2013, 54(9): 092701
doi: 10.1063/1.4818983
|
[18] |
Zhang J, Zhong C K. The existence of global attractors for a class of reaction-diffusion equations with distribution derivatives terms in $\Bbb R ^{n}$. J Math Anal Appl, 2015, 427: 365-376
doi: 10.1016/j.jmaa.2015.02.024
|
[19] |
Zhong C K, Yang M H, Sun C Y. The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations. J Differential Equations, 2006, 223: 367-399
doi: 10.1016/j.jde.2005.06.008
|
[20] |
Zhu K X, Zhou F. Continuity and pullback attractors for a non-autonomous reaction-diffusion equation in $\Bbb R ^{N}$. Comput Math Appl, 2016, 71: 2089-2105
doi: 10.1016/j.camwa.2016.04.004
|