数学物理学报 ›› 2023, Vol. 43 ›› Issue (1): 159-168.

• • 上一篇    下一篇

一类椭圆障碍问题弱解梯度的全局 BMO 估计

佟玉霞,郭艳敏,谷建涛*()   

  1. 华北理工大学理学院 河北唐山 063210
  • 收稿日期:2020-11-17 修回日期:2022-03-04 出版日期:2023-02-26 发布日期:2023-03-07
  • 通讯作者: *谷建涛, E-mail: jiantaogu@126.com
  • 基金资助:
    河北省教育厅重点项目(ZD2022070)

Global BMO Estimation for the Gradient of Weak Solutions to a Class of Elliptic Obstacle Problems

Tong Yuxia,Guo Yanmin,Gu Jiantao*()   

  1. College of Science, North China University of Science and Technology, Hebei Tangshan 063210
  • Received:2020-11-17 Revised:2022-03-04 Online:2023-02-26 Published:2023-03-07
  • Supported by:
    key project of Hebei Provincial Department of Education(ZD2022070)

摘要:

该文基于 Hardy-Littewood 极大函数有界性、Young 函数的 Jensen 不等式和扰动法等技巧, 获得了一类椭圆方程障碍问题弱解梯度在全空间上的全局 BMO 估计.

关键词: 障碍问题, 弱解, BMO 估计

Abstract:

In this paper, the global BMO estimates for the gradient of weak solutions to a class of elliptic equation obstacle problems is considered by using the Hardy-Littlewood maximal functions, the Jensen inequality for Young function, the perturbation method and other techniques.

Key words: Obstacle problem, Weak solution, BMO estimation

中图分类号: 

  • O175.25