数学物理学报, 2023, 43(1): 1-13

$ \boldsymbol{H^{p,q,s}}({\Bbb D})$上的复合算子

陈洪欣,, 张学军,*, 周敏,

湖南师范大学数学与统计学院 长沙410006

Composition Operators on $ \boldsymbol{H^{p,q,s}}({\Bbb D})$

Chen Hongxin,, Zhang Xuejun,*, Zhou Min,

College of Mathematics and Statistics, Hunan Normal University, Changsha 410006

通讯作者: *张学军, E-mail: xuejunttt@263.net

收稿日期: 2022-05-2   修回日期: 2022-08-5  

基金资助: 国家自然科学基金(11942109)
湖南省自然科学基金(2022JJ30369)

Received: 2022-05-2   Revised: 2022-08-5  

Fund supported: The NSFC(11942109)
The NSFH(2022JJ30369)

作者简介 About authors

陈洪欣,E-mail:1755310775@qq.com

周敏,E-mail:1479898554@qq.com

摘要

$\varphi$ 是复平面${\Bbb C}$中单位圆盘 ${\Bbb D}$上的解析自映射. 该文刻画了一般Hardy型空间$H^{p,q,s}({\Bbb D})$上使得复合算子$C_{\varphi}$有界或者紧时的符号函数 $\varphi$.

关键词: 复合算子; 有界性; 紧性; 一般 Hardy 型空间; 单位圆盘

Abstract

Let $\varphi$ be an analytic self-map of the unit disc ${\Bbb D}$ in the complex plane ${\Bbb C}$. In this paper, the authors characterize those symbols $\varphi$ such that composition operators $C_{\varphi}$ are bounded or compact on the general Hardy type space $H^{p,q,s}({\Bbb D})$.

Keywords: Composition operator; Boundedness; Compactness; General Hardy type space; Unit disc

PDF (330KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈洪欣, 张学军, 周敏. $ \boldsymbol{H^{p,q,s}}({\Bbb D})$上的复合算子[J]. 数学物理学报, 2023, 43(1): 1-13

Chen Hongxin, Zhang Xuejun, Zhou Min. Composition Operators on $ \boldsymbol{H^{p,q,s}}({\Bbb D})$[J]. Acta Mathematica Scientia, 2023, 43(1): 1-13

1 引言

${\Bbb D}$ 是复平面 ${\Bbb C}$上的单位圆盘, $H({\Bbb D})$ 表示 ${\Bbb D}$上的解析函数类, $H^{\infty}({\Bbb D})$ 表示 ${\Bbb D}$ 上的有界解析函数空间. 首先, 我们介绍几个本文要涉及的函数空间.

定义 1.1$p>0$, 若 $h\in H({\Bbb D})$且满足

$ \| h\| _{p}=\sup_{u\in {\Bbb D}}(1-|u|^{2})^{p}\ | h(u)|<\infty,$

则称$h$属于增长空间 $H^{\infty}_{p}({\Bbb D})$.

定义 1.2$p>0$$q> 0$, 若 $h\in H({\Bbb D})$且满足

$ \| h\| _{p,q}=\sup_{0\leq r<1}\left\{(1-r^{2})^{q}\int_{0}^{2\pi}|h(r{\rm e}^{{\rm i}\theta})|^{p}\ \frac{{\rm d}\theta}{2\pi}\right\}^{\frac{1}{p}}<\infty, $

则称$h$属于加权 Hardy 空间 $H_{q}^{p}({\Bbb D})$.

定义 1.3$\beta>-1$$p>0$, 若 $h\in H({\Bbb D})$且满足

$\| h\| _{A_{\beta}^{p}}=\left(\int_{{\Bbb D}}|h(u)|^{p}\ {\rm d}v_{\beta}(u)\right)^{\frac{1}{p}}<\infty, $

则称$h$属于加权 Bergman 空间 $A_{\beta}^{p}({\Bbb D})$, 其中 ${\rm d}v$${\Bbb D}$上正规化 Lebesgue 测度且 ${\rm d}v_{\beta}(u)=(\beta+1)(1-|u|^{2})^{\beta}\ {\rm d}v(u)$.

给定 $w\in {\Bbb D}$, 设 ${\Bbb D}$上的解析自同构 $\varphi_{w}(z)=\frac{w-z}{1-\overline{w}z}$, 很容易验证 $\varphi_{w}$ 满足 $\varphi_{w}(0)$ = $w$$\varphi_{w}(w)=0$以及 $\varphi_{w}^{-1}=\varphi_{w}$.

定义 1.4$p>0$, $q+1\geq 0$, $s\geq 0$, $q+s\geq 0$, 若 $h\in H({\Bbb D})$ 且满足

$\| h\| _{p,q,s}=\sup_{0\leq \rho<1}M_{p,q,s}(\rho,h)<\infty,$

则称 $h$ 属于一般Hardy型空间 $H^{p,q,s}({\Bbb D})$, 其中

$M_{p,q,s}^{p}(\rho,h)=\sup_{w\in {\Bbb D}}(1-\rho^{2})^{q}\int_{0}^{2\pi}|h(\rho {\rm e}^{{\rm i}\theta})|^{p}\ (1-|\varphi_{w}(\rho {\rm e}^{{\rm i}\theta})|^{2})^{s}\ \frac{{\rm d}\theta}{2\pi}. $

$p\geq 1$ 时, $H^{p,q,s}({\Bbb D})$ 依范数 $\|\cdot \| _{p,q,s}$ 构成一个Banach空间; 当 $0<p<1$ 时, $H^{p,q,s}({\Bbb D})$ 依距离 $r(h,g)=\| h-g\| ^{p}_{p,q,s}$ 构成一个完备的距离空间. 特别地, 当 $q=s=0$ 时, $H^{p,q,s}({\Bbb D})$ 恰好是 Hardy 空间$H^{p}({\Bbb D})$. 因此, $H^{p,q,s}({\Bbb D})$ 是 Hardy 空间 $H^{p}({\Bbb D})$ 的一种推广. 空间 $H^{p,q,s}({\Bbb D})$ 来源于一些实际应用[1-3], 并在文献[4]中被正式命名为单位球上一般 Hardy 型空间. 最近, 我们在文献[5,6]中进一步讨论了该空间的一些性质. 实际上, $H^{p,q,s}({\Bbb D})$ 含有几个经典函数空间, 例如, 当 $s\geq 1=-q$ 时, $H^{p,q,s}({\Bbb D})= H^{\infty}({\Bbb D})$, 当 $s\geq 1>-q$ 时, $H^{p,q,s}({\Bbb D})=H^{\infty}_{\frac{q+1}{p}}({\Bbb D})$, 当 $q>0=s$ 时, $H^{p,q,s}({\Bbb D})=H^{p}_{q}({\Bbb D})$.$0<s<1$ 时, $H^{p,q,s}({\Bbb D})$ 是一个不同于Hardy 空间 $H^{k}({\Bbb D})$ ( $0<k\leq \infty$) 和加权Hardy 空间 $H^{k}_{t}({\Bbb D})$ ($0<t<\infty$) 的新函数空间 (可参见文献[5]).

定义 1.5$\varphi: {\Bbb D}\rightarrow {\Bbb D}$ 是一个解析映射, $\varphi$ 诱导$H({\Bbb D})$ 上一个算子$C_{\varphi}$: $C_{\varphi}g=g\circ\varphi$, 称该算子 $C_{\varphi}$ 为复合算子.

单位圆盘或单位球上各种解析函数之间复合型算子的研究已经具有相当长的历史, 并且有了大量的研究成果, 其中与本文有直接关系的文献如 [1-3,7-17] 等. 本文的主要目的就是讨论 $H^{p,q,s}({\Bbb D})$上复合算子 $C_{\varphi}$ 有界或紧时符号函数 $\varphi$ 满足的条件.

本文中,若存在常数 $c>0$ 使得 $ E_{1} \geq cE_{2}$ (或 $ E_{1} \leq cE_{2}$), 我们记为 $"E_{1} \gtrsim E_{2}" $ (或 $"E_{1}\lesssim E_{2}"$).$"E_{1} \gtrsim E_{2}" $$"E_{1}\lesssim E_{2}"$, 称 $E_{1}$$E_{2}$ 等价, 记为 $"E_{1}\asymp E_{2}"$.

2 一些引理

引理 2.1[5]$h\in H^{p,q,s}({\Bbb D})$, 则

$|h(z)|\lesssim\frac{\| h\| _{p,q,s}}{(1-|z|^{2})^{\frac{q+1}{p}}} \ \ \mbox{对所有 $z\in {\Bbb D}$ 成立}. $

引理 2.2[9]$\beta>-1$, 若 $h\in A_{\beta}^{1}({\Bbb D})$, 则可由积分表示

$h(z)=\int_{{\Bbb D}}\frac{h(w) \ {\rm d}v_{\beta}(w)}{(1-z \overline{w})^{2+\beta}} \ \ (z\in {\Bbb D}). $

引理 2.3[10]$c>0$$\delta>-1$, 则

$\int_{0}^{2\pi}\frac{{\rm d}\theta}{|1-\overline{w} {\rm e}^{{\rm i}\theta}|^{1+c}}\asymp \int_{{\Bbb D}}\frac{(1-|u|^{2})^{\delta}\ {\rm d}v(u)}{|1-\overline{w}u|^{2+\delta+c}}\asymp\frac{1}{(1-|w|^{2})^{c}} \ \ \mbox{对所有 $w\in {\Bbb D}$ 成立}. $

下列引理是 Littlewood 从属定理 (可参见文献[12]).

引理 2.4[12]$p>0$ 以及 $\psi:{\Bbb D}\rightarrow {\Bbb D}$ 是一个解析映射且满足 $\psi(0)=0$, 则

$\int_{0}^{2\pi}|f[\psi(\rho {\rm e}^{{\rm i}\theta})]|^{p}\ {\rm d}\theta\leq \int_{0}^{2\pi}|f(\rho {\rm e}^{{\rm i}\theta})|^{p}\ {\rm d}\theta $

对所有 $f\in H({\Bbb D})$$0\leq \rho<1$ 成立.

${\Bbb D}$内两点有下列积分双向估计. 这些结果来自文献[4]中命题3.1 (情形 $n=1$).

引理 2.5[4]$w$$a$$ {\Bbb D}$ 中两点.对 $r> 0$$t> 0$, 记

$I_{w,a}=\int_{0}^{2\pi}\frac{{\rm d}\theta}{|1-\overline{w}{\rm e}^{{\rm i}\theta}|^{ t}\ |1-\overline{a}{\rm e}^{{\rm i}\theta}|^{ r}}, $

则有下列双向估计

(1) 当 $t+r>1$$\max\{t,r\}<1$ 时, $ I_{w,a}\asymp \frac{1}{ |1-w\overline{a}|^{t+r-1}}$.

(2) 当 $t=1>r$ 时, $ I_{w,a}\asymp\frac{1}{|1-w\overline{a}|^{r}}\log\frac{e}{|1-w\overline{\varphi_{w}(a)}|}$.

(3) 当 $t=1=r$ 时, $ I_{w,a}\asymp \frac{1}{|1-w\overline{a}|}\log\frac{e}{1-|\varphi_{w}(a)|^{2}}$.

(4) 当 $t>1>r$ 时, $ I_{w,a}\asymp \frac{1}{(1-|w|^{2})^{ t-1}\ |1-w\overline{a}|^{ r}}$.

(5) 当 $t>1$$r>1$ 时, $I_{w,a} \asymp\frac{1}{(1-|w|^{2})^{t-1}|1-w\overline{a}|^{ r}} + \frac{1}{(1-|a|^{2})^{ r-1}|1-w\overline{a}|^{ t}}$.

(6) 当 $t>1=r$ 时, $I_{w,a} \asymp \frac{1}{(1-|w|^{2})^{t-1}|1-w\overline{a}|} + \frac{1}{|1-w\overline{a}|^{ t}}\log\frac{e}{1-|\varphi_{a}(w)|^{2}}$.

引理 2.6[6]$p>0$$0<p_{0}\leq 1$, 则

$(1-\rho^{2})^{\frac{1-p_{0}}{p_{0}}}\int_{0}^{2\pi}|h(\rho^{2}{\rm e}^{{\rm i}\theta})|^{p}\ {\rm d}\theta\leq \left\{\int_{0}^{2\pi}|h(\rho {\rm e}^{{\rm i}\tau})|^{pp_{0}}\ {\rm d}\tau\right\}^{\frac{1}{p_{0}}} $

对所有 $h\in H({\Bbb D})$$0\leq \rho<1$ 成立.

3 主要结果

定理 3.1$\varphi: \ {\Bbb D}\rightarrow {\Bbb D}$ 是一个解析映射.

(1) 若 $\varphi$ 是一个自同构, 则 $C_{\varphi}$$H^{p,q,s}({\Bbb D})$ 上有界.

(2) 若 $s\geq 1\geq -q$$s=0\leq q$, 则 $C_{\varphi}$$H^{p,q,s}({\Bbb D})$ 上总是有界的.

(3) 若 $q+1>0$$C_{\varphi}$$H^{p,q,s}({\Bbb D})$ 上的紧算子, 则

$ \lim_{|w|\rightarrow 1^{-}}\frac{1-|w|^{2}}{1-|\varphi(w)|^{2}}=0.$

(4) 若 $s\geq 1> -q$$s=0< q$, 则 $C_{\varphi}$$H^{p,q,s}({\Bbb D})$ 上紧当且仅当(3.1)式成立.

(5) 若 $q=0=s$, 则 $C_{\varphi}$$H^{p,q,s}({\Bbb D})$ 上的紧算子当且仅当

$\lim_{|w|\rightarrow 1^{-}}\frac{N_{\varphi}(w)}{1-|w|^{2}}=0, $

其中 $N_{\varphi}(w)$ 是计数函数.

(6) 若 $\| \varphi\| _{\infty}<1$, 则 $C_{\varphi}$$H^{p,q,s}({\Bbb D})$上的紧算子.

(7) 若 $q+1=0$, 则 $C_{\varphi}$$H^{p,q,s}({\Bbb D})$ 上的紧算子当且仅当 $\| \varphi\| _{\infty}<1$.

(8) 当 $0<s<1$ 时, 若 $C_{\varphi}$$H^{p,q,s}({\Bbb D})$ 上的有界算子, 则对任意 $t>0$

$\sup_{0\leq \rho<1, a, w\in {\Bbb D}}(1-\rho^{2})^{q}\int_{0}^{2\pi}\frac{(1-|w|^{2})^{t}(1-|\varphi_{a}(\rho {\rm e}^{{\rm i}\theta})|^{2})^{s}}{|1-\overline{w}\varphi(\rho {\rm e}^{{\rm i}\theta})|^{q+1+t}}\ {\rm d}\theta<\infty.$

(9) 当 $0<s<1$$q+s>0$ 时, 如果 $p>1$ 取任意 $\beta >(q+1)/p-1$ 或者 $0<p\leq 1$ 取任意 $\beta>q+\max\{s,p\}-1$, 若

$\sup_{0\leq\tau\leq 2\pi}\int_{0}^{2\pi}\frac{(1-|a|^{2})^{s}|1-\overline{\varphi(a)}\varphi(\rho {\rm e}^{{\rm i}\theta})|^{2s}\ {\rm d}\theta}{(1-|\varphi(a)|^{2})^{s}|1-r {\rm e}^{-{\rm i}\tau}\varphi(\rho {\rm e}^{{\rm i}\theta})|^{2+\beta}|1-\overline{a}\rho {\rm e}^{{\rm i}\theta}|^{2s}}\lesssim \frac{1}{(1-r\rho)^{\beta+1}}$

对所有 $a\in {\Bbb D}$$0\leq r,\rho<1$ 成立, 则 $C_{\varphi}$$H^{p,q,s}({\Bbb D})$ 上的有界算子.

(10) 当 $0<s<1$$q+s>0$ 时, 若(3.4)式成立, 则 $C_{\varphi}$$H^{p,q,s}({\Bbb D})$ 上的紧算子当且仅当(3.1)式成立.

为了下面的证明, 我们首先选取参数

$\alpha>\max\left\{\frac{q+1}{p}-1, \ \frac{q+s}{p}-1, \ \frac{q+s+1}{p}-2\right\}.$

(1) 若 $\varphi$ 是一个自同构, 则存在酉变换 $U$ 和对合自同构 $\varphi_{a_{0}}$ 使得 $\varphi=\varphi_{a_{0}}\circ U$, 其中 $a_{0}=\varphi(0)$. 因此, 我们仅需证明 $\varphi$ 是酉变换或者对合自同构时结论成立.

$\varphi$ 是一个酉变换时, 设 $\varphi(z)=\lambda z$ ($z\in {\Bbb D}$), 其中 $\lambda$ 是一个复常数满足 $|\lambda|=1$. 对任意 $g\in H^{p,q,s}({\Bbb D})$, 我们有

$ \begin{eqnarray*} \| C_{\varphi}g\| _{p,q,s}^{p}&=&\sup_{0\leq \rho<1}\sup_{a\in {\Bbb D}}(1-\rho^{2})^{q}\int_{0}^{2\pi}|g[\varphi(\rho {\rm e}^{{\rm i}\theta})]|^{p}(1-|\varphi_{a}(\rho {\rm e}^{{\rm i}\theta})|^{2})^{s}\ \frac{{\rm d}\theta}{2\pi} \\ &=&\sup_{0\leq \rho<1}\sup_{ \lambda a\in {\Bbb D}}(1-|\lambda\rho|^{2})^{q}\int_{0}^{2\pi}|g(\lambda\rho {\rm e}^{{\rm i}\theta})|^{p} (1-|\varphi_{\lambda a}(\lambda\rho {\rm e}^{{\rm i}\theta})|^{2})^{s}\ \frac{{\rm d}\theta}{2\pi}\\ &=&\| g\| _{p,q,s}^{p}. \end{eqnarray*}$

这表明 $C_{\varphi}$$H^{p,q,s}({\Bbb D})$ 上有界且 $\| \cdot\| _{p,q,s}$ 是酉不变的.

$\varphi$ 是一个对合自同构时, 根据 $\| \cdot\| _{p,q,s}$ 酉不变性可设 $\varphi=\varphi_{a_{0}}$ 满足 $a_{0}=\varphi(0)\geq 0$. 对任意 $0\leq\rho<1$, $0\leq \theta\leq 2\pi$, $a\in {\Bbb D}$, 根据变量替换 $\xi=\varphi_{a_{0}}(\rho {\rm e}^{{\rm i}\theta})$ 可得

$\xi=c_{0}+r{\rm e}^{{\rm i}\tau}=\frac{a_{0}-\rho {\rm e}^{{\rm i}\theta}}{1-a_{0}\rho {\rm e}^{{\rm i}\theta}}, \ \ c_{0}=\frac{(1-\rho^{2})a_{0}}{1-\rho^{2}a_{0}^{2}}, \ \ r=\frac{\rho(1-a_{0}^{2})}{1-\rho^{2}a_{0}^{2}}, \ \ c_{0}+r=\frac{a_{0}+\rho}{1+\rho a_{0}}, 1-c_{0}a_{0}=\frac{r}{\rho}, \ \ {\rm d}\theta=\frac{\varphi'_{a_{0}}(c_{0}+r{\rm e}^{{\rm i}\tau})r{\rm e}^{{\rm i}\tau}\ {\rm d}\tau}{\varphi_{a_{0}}(c_{0}+r{\rm e}^{{\rm i}\tau})}=\frac{1-\rho^{2}a_{0}^{2}}{|1-\rho a_{0}{\rm e}^{{\rm i}\tau}|^{2}}\ {\rm d}\tau.$

根据(3.5)式和 $a=\varphi_{a_{0}}[\varphi_{a_{0}}(a)],$ 结合文献[9]中引理 1.3 可得

$\begin{matrix} &\;& (1-\rho^{2})^{q}\int_{0}^{2\pi}|g[\varphi_{a_{0}}(\rho {\rm e}^{{\rm i}\theta})]|^{p}(1-|\varphi_{a}(\rho {\rm e}^{{\rm i}\theta})|^{2})^{s}\ {\rm d}\theta \\ &\; =&(1-\rho^{2})^{q+s}(1-|a|^{2})^{s}\int_{0}^{2\pi}\frac{|g(c_{0}+r{\rm e}^{{\rm i}\tau})|^{p}(1-\rho^{2}a_{0}^{2})\ {\rm d}\tau}{|1-\rho a_{0}{\rm e}^{{\rm i}\tau}|^{2}|1-\overline{a}\varphi_{a_{0}}(c_{0}+r{\rm e}^{{\rm i}\tau})|^{2s}} \\ &\; =&\frac{(1-\rho^{2})^{q+s}(1-|a|^{2})^{s}(1-a_{0}^{2})^{2s}}{(1-\rho^{2}a_{0}^{2})^{2s-1}|1-a_{0}\overline{a}|^{2s}}\int_{0}^{2\pi}\frac{|g(c_{0}+r{\rm e}^{{\rm i}\tau})|^{p} \ {\rm d}\tau}{|1-\rho a_{0}{\rm e}^{{\rm i}\tau}|^{2-2s}|1-\overline{a}\varphi_{a_{0}}(c_{0}+r{\rm e}^{{\rm i}\tau})|^{2s}} \\ &\asymp&(1-\rho^{2})^{q+s}(1-|a|^{2})^{s}\int_{0}^{2\pi}\frac{|g(c_{0}+r{\rm e}^{{\rm i}\tau})|^{p}\ {\rm d}\tau}{|1-\overline{\varphi_{a_{0}}(a)}(c_{0}+r{\rm e}^{{\rm i}\tau})|^{2s}}. \end{matrix}$

我们考虑函数

$F(u)=\frac{g(u)}{(1-\overline{\varphi_{a_{0}}(a)}\ u)^{\frac{2s}{p}}} \ \ \ (u\in {\Bbb D}).$

根据条件 $\alpha>(q+1)/p-1$ 和引理 2.1, 2.2可得

$\begin{equation} F(w)=\int_{{\Bbb D}}\frac{F(u)}{(1-w\overline{u})^{2+\alpha}}\ {\rm d}v_{\alpha}(u) \ \ (w\in {\Bbb D}). \end{equation}$

(i) 情形 $q+s>0$.

$p>1$ 时, 条件 $\alpha> (q+s)/p-1$$q+s>0$表明我们可以取 $\max\{\alpha, q+s-1\}<\alpha_{1}<\min\{p(\alpha+1)-1, q+s+\alpha\}$, 使得 $(p\alpha-\alpha_{1})/(p-1)>-1, \ \alpha_{1}-\alpha>0, \ \alpha_{1}-q-s>-1, $$ q+s-\alpha_{1}+\alpha>0$. 由(3.7)式和 Hölder 不等式以及(3.5)式可得

$\begin{matrix} |F(c_{0}+r{\rm e}^{{\rm i}\tau})|^{p}&\leq&\left(\int_{{\Bbb D}}\frac{|F(u)|\ {\rm d}v_{\alpha}(u)}{|1-(c_{0}+r{\rm e}^{{\rm i}\tau})\overline{u}|^{2+\alpha}}\right)^{p} \\ & \lesssim& \int_{{\Bbb D}}\frac{|F(u)|^{p}(1-|u|^{2})^{\alpha_{1}} {\rm d}v(u)}{|1- (c_{0}+r{\rm e}^{{\rm i}\tau})\overline{u}|^{2+\alpha}}\left(\int_{{\Bbb D}}\frac{(1-|u|^{2})^{\frac{p\alpha-\alpha_{1}}{p-1}}\ {\rm d}v(u)}{|1- (c_{0}+r{\rm e}^{{\rm i}\tau})\overline{u}|^{2+\alpha}}\right)^{p-1} \\ & \asymp&\frac{1}{(1-|c_{0}+r{\rm e}^{{\rm i}\tau}|^{2})^{\alpha_{1}-\alpha}}\int_{{\Bbb D}}\frac{|F(u)|^{p}(1-|u|^{2})^{\alpha_{1}}\ {\rm d}v(u)}{|1- (c_{0}+r{\rm e}^{{\rm i}\tau})\overline{u}|^{2+\alpha}} \\ & \lesssim&\frac{1}{(1-\rho^{2})^{\alpha_{1}-\alpha}}\int_{{\Bbb D}}\frac{|F(u)|^{p}(1-|u|^{2})^{\alpha_{1}}\ {\rm d}v(u)}{|1-(c_{0}+r{\rm e}^{{\rm i}\tau})\overline{u}|^{2+\alpha}}. \end{matrix}$

$c_{0}+r=(a_{0}+\rho)/(1+\rho a_{0})<1$, 故 $r|\overline{u}|<1-c_{0}|\overline{u}|\leq |1-c_{0}\overline{u}|$. 因此,

$\left|\frac{r\overline{u}}{1-c_{0}\overline{u}}\right|<1 \ \ \mbox{对任意 $u\in D$ 成立}. $

由(3.6),(3.8)式, Fubini 定理, 引理 2.3, 文献[9,引理 1.8], $\alpha_{1}-q-s>-1$, $q+s-\alpha_{1}+\alpha>0$, 文献[引理 6], 文献[9,引理1.2], $c_{0}+r=(a_{0}+\rho)/(1+\rho a_{0})$, 我们可得

$\begin{eqnarray*} &\;& (1-\rho^{2})^{q}\int_{0}^{2\pi}|g[\varphi_{a_{0}}(\rho {\rm e}^{{\rm i}\theta})]|^{p} (1-|\varphi_{a}(\rho {\rm e}^{{\rm i}\theta})|^{2})^{s}\ {\rm d}\theta \\ &\;\lesssim & \int_{{\Bbb D}}|F(u)|^{p}(1-|u|^{2})^{\alpha_{1}}\left\{\int_{0}^{2\pi}\frac{(1-\rho^{2})^{q+s+\alpha-\alpha_{1}}(1-|a|^{2})^{s}\ {\rm d}\tau}{|1-(c_{0}+r{\rm e}^{{\rm i}\tau})\overline{u}|^{2+\alpha}}\right\}{\rm d}v(u)\\ &\; =&\int_{{\Bbb D}}\frac{|F(u)|^{p}(1-|u|^{2})^{\alpha_{1}}}{|1-c_{0}\overline{u}|^{2+\alpha}}\left\{\int_{0}^{2\pi}\frac{(1-\rho^{2})^{q+s+\alpha-\alpha_{1}}(1-|a|^{2})^{s}\ {\rm d}\tau}{|1-\frac{r\overline{u}}{1-c_{0}\overline{u}}\ {\rm e}^{{\rm i}\tau}|^{2+\alpha}}\right\}{\rm d}v(u)\\ &\; \asymp &(1-\rho^{2})^{q+s+\alpha-\alpha_{1}}(1-|a|^{2})^{s}\int_{{\Bbb D}}\frac{|1-c_{0}u|^{-1}|g(u)|^{p}(1-|u|^{2})^{\alpha_{1}}\ {\rm d}v(u)}{|1-\overline{\varphi_{a_{0}}(a)}\ u|^{2s}\{|1-c_{0}u|-r|u|\}^{\alpha+1}}\\ &\; \lesssim &(1-\rho^{2})^{q+s+\alpha-\alpha_{1}}(1-|a|^{2})^{s}\int_{{\Bbb D}}\frac{|g(u)|^{p}(1-|u|^{2})^{\alpha_{1}}\ {\rm d}v(u)}{|1-\overline{\varphi_{a_{0}}(a)}\ u|^{2s}\{1-(c_{0}+r)|u|\}^{\alpha+1}} \\ &\; =&(1-\rho^{2})^{q+s+\alpha-\alpha_{1}}(1-|a|^{2})^{s}\int_{0}^{1}\frac{2t(1-t^{2})^{\alpha_{1}}}{\{1-(c_{0}+r)t\}^{\alpha+1}}\frac{(1-t^{2})^{-s-q}}{(1-|\varphi_{a_{0}}(a)|^{2})^{s}} \\ &\;& \times \left\{(1-t^{2})^{q}\int_{0}^{2\pi}|g(t{\rm e}^{{\rm i}\theta})|^{p}(1-|\varphi_{\varphi_{a_{0}}(a)}(t{\rm e}^{{\rm i}\theta})|^{2})^{s}\ \frac{{\rm d}\theta}{2\pi}\right\}{\rm d}t \\ &\; \lesssim & \frac{(1-\rho)^{q+s-\alpha_{1}+\alpha}(1-|a|^{2})^{s}}{(1-|\varphi_{a_{0}}(a)|^{2})^{s}}\| g\| ^{p}_{p,q,s}\int_{0}^{1}\frac{(1-t)^{\alpha_{1}-q-s}\ {\rm d}t}{\{1-(c_{0}+r)t\}^{\alpha+1}}\\ &\; \asymp &\frac{(1-\rho)^{q+s-\alpha_{1}+\alpha}}{\{1-(c_{0}+r)\}^{q+s-\alpha_{1}+\alpha}}\| g\| ^{p}_{p,q,s}\asymp\| g\| ^{p}_{p,q,s}. \end{eqnarray*}$

$0<p\leq 1$ 时, 设 $\alpha=(2+\alpha')/p-2$. 条件 $\alpha>(q+s+1)/p-2$ 意味着 $\alpha'>q+s-1$. 由(3.7)式结合文献[9,引理 2.15] 可得

$\begin{equation} |F(c_{0}+r{\rm e}^{{\rm i}\tau})|^{p}\leq \left(\int_{{\Bbb D}}\frac{|F(u)|\ {\rm d}v_{\alpha}(u)}{|1-(c_{0}+r{\rm e}^{{\rm i}\tau})\overline{u}|^{2+\alpha}}\right)^{p} \lesssim \int_{{\Bbb D}}\frac{|F(u)|^{p}\ (1-|u|^{2})^{\alpha'} {\rm d}v(u)}{|1-(c_{0}+r{\rm e}^{{\rm i}\tau})\overline{u}|^{2+\alpha'}}. \end{equation}$

由(3.6)和(3.9)式, Fubini 定理, $r|\overline{u}|/|1-c_{0}\overline{u}|<1$, 引理 2.3, 文献[9,引理 1.8], $\alpha'-q-s>-1$, 文献[引理 6], $q+s>0$, $c_{0}+r=(a_{0}+\rho)/(1+\rho a_{0})$, 我们可得

$\begin{eqnarray*} &\;& (1-\rho^{2})^{q}\int_{0}^{2\pi}|g[\varphi_{a_{0}}(\rho {\rm e}^{{\rm i}\theta})]|^{p} (1-|\varphi_{a}(\rho {\rm e}^{{\rm i}\theta})|^{2})^{s}\ {\rm d}\theta \\ &\;\lesssim &\int_{{\Bbb D}}|F(u)|^{p}(1-|u|^{2})^{\alpha'}\left\{\int_{0}^{2\pi}\frac{(1-\rho^{2})^{q+s}(1-|a|^{2})^{s}\ {\rm d}\tau}{|1-(c_{0}+r{\rm e}^{{\rm i}\tau})\overline{u}|^{2+\alpha'}}\right\}{\rm d}v(u) \\ &\; \lesssim &(1-\rho^{2})^{q+s}(1-|a|^{2})^{s}\int_{{\Bbb D}}\frac{|g(u)|^{p}(1-|u|^{2})^{\alpha'}\ {\rm d}v(u)}{|1-\overline{\varphi_{a_{0}}(a)}\ u|^{2s}\{1-(c_{0}+r)|u|\}^{\alpha'+1}}\\ &\; \lesssim &\frac{(1-\rho)^{q+s}(1-|a|^{2})^{s}}{(1-|\varphi_{a_{0}}(a)|^{2})^{s}}\| g\| ^{p}_{p,q,s}\int_{0}^{1}\frac{(1-t)^{\alpha'-q-s}\ {\rm d}t}{\{1-(c_{0}+r)t\}^{\alpha'+1}}\asymp\| g\| ^{p}_{p,q,s}. \end{eqnarray*}$

(ii) 情形 $q+s=0$.

在这种情形下, $H^{p,q,s}({\Bbb D})\subseteq H^{p}({\Bbb D})$, 因而 $g({\rm e}^{{\rm i}\tau})$$ [2\pi]$ 上几乎处处有定义. 根据解析函数积分平均的递增性和文献[9,引理1.3]结合(3.5)式, 我们可得

$\begin{eqnarray*} (1-|a|^{2})^{s}\int_{0}^{2\pi}\left|\frac{g[\varphi_{a_{0}}(\rho {\rm e}^{{\rm i}\theta})]}{(1-\overline{a}\rho {\rm e}^{{\rm i}\theta})^{\frac{2s}{p}}}\right|^{p} {\rm d}\theta & \leq&(1-|a|^{2})^{s}\int_{0}^{2\pi}\left|\frac{g[\varphi_{a_{0}}( {\rm e}^{{\rm i}\theta})]}{(1-\overline{a} {\rm e}^{{\rm i}\theta})^{\frac{2s}{p}}}\right|^{p} {\rm d}\theta\\ &\; =&(1-|a|^{2})^{s}\int_{0}^{2\pi}\left|\frac{g({\rm e}^{{\rm i}\tau})}{\{1-\overline{a}\varphi_{a_{0}}({\rm e}^{{\rm i}\tau})\}^{\frac{2s}{p}}}\right|^{p} \frac{1-a_{0}^{2}}{|1-a_{0}{\rm e}^{{\rm i}\tau}|^{2}}\ {\rm d}\tau\\ &\; =&(1-|a|^{2})^{s}\int_{0}^{2\pi}\frac{|g({\rm e}^{{\rm i}\tau})|^{p}|1-a_{0}{\rm e}^{{\rm i}\tau}|^{2s-2}(1-a_{0}^{2})}{|1-a_{0}\overline{a}|^{2s}|1-\overline{\varphi_{a_{0}}(a)}{\rm e}^{{\rm i}\tau}|^{2s}}\ {\rm d}\tau\\ &\; \asymp &\int_{0}^{2\pi}\frac{|g({\rm e}^{{\rm i}\tau})|^{p}\ (1-|\varphi_{a_{0}}(a)|^{2})^{s}}{|1-\overline{\varphi_{a_{0}}(a)}{\rm e}^{{\rm i}\tau}|^{2s}}\ \frac{{\rm d}\tau}{2\pi}\leq\| g\| _{p,q,s}^{p}. \end{eqnarray*}$

总之, 对所有 $q+s\geq 0$, 我们都有 $\| C_{\varphi}g\| _{p,q,s}\lesssim \| g\| _{p,q,s}$.

(2) 根据文献[5,命题3.3], 当 $s\geq 1> -q$ 时, $H^{p,q,s}({\Bbb D})=H^{\infty}_{\frac{q+1}{p}}({\Bbb D})$;当 $s\geq 1=-q$ 时, $H^{p,q,s}({\Bbb D})=H^{\infty}({\Bbb D})$. 因此, 当 $s\geq 1\geq -q$ 时, $C_{\varphi}$$H^{p,q,s}({\Bbb D})$ 上总是有界的. 我们仅仅需要证明情形 $s=0\leq q$ 时的结果. 实际上, $\varphi=\varphi_{a_{0}}\circ\psi$, 其中 $a_{0}=\varphi(0)$$\psi: {\Bbb D}\rightarrow {\Bbb D}$ 是一个解析映射且满足 $\psi(0)=0$. 对任意 $g\in H^{p,q,s}({\Bbb D})$$0\leq\rho<1$, 根据引理 2.4 可得

$ (1-\rho^{2})^{q}\int_{0}^{2\pi}|g[\varphi(\rho {\rm e}^{{\rm i}\theta})]|^{p}\ {\rm d}\theta \leq (1-\rho^{2})^{q}\int_{0}^{2\pi}|g[\varphi_{a_{0}}(\rho {\rm e}^{{\rm i}\theta})]|^{p} {\rm d}\theta. $

余下的证明和(1)中情形 $s=0$ 时相同.

(3) 当 $\| \varphi\| _{\infty}=\sup \{ |\varphi(z)|: z\in D \}<1$ 时,(3.1)式是显然的. 当 $\| \varphi\| _{\infty}=1$ 时, 设 $\{w^{j}\}\subset {\Bbb D}$ 是任一使得 $|\varphi(w^{j})|\rightarrow 1$ ($j\rightarrow\infty$) 的序列. 我们取

$g_{j}(w)=\frac{(1-|\varphi(w^{j})|^{2})^{\frac{|q|}{p}+1}}{(1- w\overline{\varphi(w^{j})})^{\frac{q+1+|q|}{p}+1}} \ \ \ (w\in {\Bbb D}). $

$\{g_{j}\}$${\Bbb D}$ 的任一紧子集上一致趋于0. 根据引理 2.5, 分三种情况 $0\leq 2s<1$, $2s=1$, $2s>1$, 容易证明$\sup \{\| g_{j}\| _{p,q,s}: j=1,2,\cdots \}\lesssim 1$ (可参见文献[5]). 因此, 由引理2.1可得

$\begin{equation} \left(\frac{1-|w^{j }|^{2}}{1-|\varphi(w^{j})|^{2}}\right)^{\frac{q+1}{p}}=(1-|w^{j}|^{2})^{\frac{q+1}{p}}|C_{\varphi}g_{j}(w^{j})|\lesssim \| C_{\varphi}g_{j}\| _{p,q,s}\rightarrow 0 \ \ (j\rightarrow\infty). \end{equation}$

这表明(3.1)式成立.

(4) 必要性在结论 (3)中已经证明. 下面我们证充分性.

设序列 $\{h_{k}\}$${\Bbb D}$ 的任一紧子集上一致趋于0, 且对所有 $k\in \{1,2,\cdots\}$满足 $\| h_{k}\| _{p,q,s}\leq 1$.$s\geq 1>-q$ 时, $H^{p,q,s}({\Bbb D})=H^{\infty}_{\frac{q+1}{p}}({\Bbb D})$.$(3.1)$ 式成立, 容易证明 $\| C_{\varphi}h_{k}\| _{p,q,s}\rightarrow0 \ (k\rightarrow\infty)$.$s=0<q$ 时, 对任意 $k\in \{1,2,\cdots\}$$\rho\in (1/2,1)$, 由(3.7)式, 我们可以取

$ T_{\rho}h_{k}(w)=\int_{{\Bbb D}}H_{\rho}(w,u)h_{k}(u)\ {\rm d}v_{\alpha}(u), $

其中

$H_{\rho}(w,u)=\frac{\chi_{\rho}(w)}{ |1-\varphi(w)\overline{u}|^{2+\alpha}} \ \ (w,\ u \in {\Bbb D}), $

$\chi_{\rho}$ 表示集合 $\{z: \rho<|z|<1\}$ 的特征函数. 设 $a_{0}=\varphi(0)$

$ M_{\rho}=\sup_{\rho<|z|<1}\frac{1-|z|^{2}}{1-|\varphi(z)|^{2}}. $

$p>1$ 时, 条件 $\alpha> q/p-1$$q>0$ 意味着我们可以取 $\max\{\alpha, q-1\}<\alpha_{1}<\min\{p(\alpha+1)-1, q+\alpha\}$ 使得 $\left(\alpha-\frac{\alpha_{1}}{p}\right)\frac{p}{p-1}>-1, \ \alpha_{1}-\alpha>0, \ \alpha_{1}-q>-1, \ q-\alpha_{1}+\alpha>0.$$|w|>\rho$ 时, 根据 Hölder 不等式和引理2.3可得

$ \begin{matrix} \{T_{\rho}(|h_{k}|)(w)\}^{p}&\lesssim& \frac{\chi_{\rho}(w)}{(1-|\varphi(w)|^{2})^{\alpha_{1}-\alpha}}\int_{{\Bbb D}}\frac{|h_{k}(u)|^{p}(1-|u|^{2})^{\alpha_{1}}\ {\rm d}v(u)}{|1-\varphi(w)\overline{u}|^{2+\alpha}} \\ &\leq &\frac{M_{\rho}^{\alpha_{1}-\alpha}}{(1-|w|^{2})^{\alpha_{1}-\alpha}}\int_{{\Bbb D}}\frac{|h_{k}(u)|^{p}(1-|u|^{2})^{\alpha_{1}}\ {\rm d}v(u)}{|1-\varphi(w)\overline{u}|^{2+\alpha}}. \end{matrix}$

如果 $1/2<r<1$$u\in {\Bbb D}$, 我们有

$\begin{matrix} 1-r^{2}|\varphi_{a_{0}}(u)|^{2} & = & 1-r^{2}+\frac{r^{2}(1-|a_{0}|^{2})(1-|u|^{2})}{|1-\overline{a_{0}}u|^{2}} \\ & \geq& 1-r^{2}+\frac{1-|a_{0}|}{4(1+|a_{0}|)}(1-|u|^{2}) \\ &\geq& \frac{1-|a_{0}|}{4(1+|a_{0}|)}(2-r-|u|) \\ &\geq& \frac{1-|a_{0}|}{4(1+|a_{0}|)}(1-r|u|). \end{matrix}$

如果 $0\leq r\leq 1/2$$u\in {\Bbb D}$, 我们有

$\begin{equation} 1-r^{2}|\varphi_{a_{0}}(u)|^{2}\geq \frac{3}{4}\geq \frac{3(2-r-|u|)}{8}\geq \frac{3(1-r|u|)}{8}. \end{equation}$

$\varphi=\varphi_{a_{0}}\circ\psi$ 满足 $\psi(0)=0$.$\rho<r<1$时, 根据 Fubini 定理, 引理 2.4, 文献[9,引理1.3和引理1.8],(3.11)-(3.13)式, $\alpha_{1}-q>-1$, $q-\alpha_{1}+\alpha>0$, 文献[引理6], 可得

$\begin{matrix} &\;& (1-r^{2})^{q}\int_{0}^{2\pi}\{T_{\rho}(|h_{k}|)(r{\rm e}^{{\rm i}\theta})\}^{p}\ {\rm d}\theta \\ &\lesssim& M_{\rho}^{\alpha_{1}-\alpha}(1-r^{2})^{q+\alpha-\alpha_{1}} \int_{{\Bbb D}}|h_{k}(u)|^{p}(1-|u|^{2})^{\alpha_{1}}\left\{\int_{0}^{2\pi}\frac{ {\rm d}\theta}{|1-\varphi_{a_{0}}[\psi(r{\rm e}^{{\rm i}\theta})]\overline{u}|^{2+\alpha}}\right\}{\rm d}v(u) \\ &\; \leq & \int_{{\Bbb D}}|h_{k}(u)|^{p}(1-|u|^{2})^{\alpha_{1}}\left\{\int_{0}^{2\pi}\frac{ M_{\rho}^{\alpha_{1}-\alpha}(1-r^{2})^{q+\alpha-\alpha_{1}}\ {\rm d}\theta}{|1-\varphi_{a_{0}}(r{\rm e}^{{\rm i}\theta})\overline{u}|^{2+\alpha}}\right\}{\rm d}v(u) \\ &\; \asymp & \int_{{\Bbb D}}|h_{k}(u)|^{p}(1-|u|^{2})^{\alpha_{1}}\left\{\int_{0}^{2\pi}\frac{ M_{\rho}^{\alpha_{1}-\alpha}(1-r^{2})^{q+\alpha-\alpha_{1}}\ {\rm d}\theta}{|1- r{\rm e}^{{\rm i}\theta}\overline{\varphi_{a_{0}}(u)}|^{2+\alpha}}\right\}{\rm d}v(u) \\ &\; \asymp & M_{\rho}^{\alpha_{1}-\alpha}(1-r^{2})^{q+\alpha-\alpha_{1}}\int_{{\Bbb D}}\frac{|h_{k}(u)|^{p}(1-|u|^{2})^{\alpha_{1}}\ {\rm d}v(u)}{(1-r^{2}|\varphi_{a_{0}}(u)|^{2})^{1+\alpha}} \\ &\; \lesssim & M_{\rho}^{\alpha_{1}-\alpha}(1-r^{2})^{q+\alpha-\alpha_{1}}\int_{{\Bbb D}}\frac{|h_{k}(u)|^{p}(1-|u|^{2})^{\alpha_{1}}\ {\rm d}v(u)}{(1-r|u|)^{1+\alpha}} \\ &\lesssim& M_{\rho}^{\alpha_{1}-\alpha}(1-r)^{q+\alpha-\alpha_{1}}\| h_{k}\| _{p,q,s}^{p}\int_{0}^{1}\frac{(1-t)^{\alpha_{1}-q}\ {\rm d}t}{(1-rt)^{1+\alpha}} \lesssim M_{\rho}^{\alpha_{1}-\alpha}. \end{matrix}$

根据(3.7)(情形 $s=0$) 和(3.14)式, 有

$\begin{eqnarray*} &\;& \sup_{0\leq r<1}(1-r^{2})^{q}\int_{0}^{2\pi}|h_{k}[\varphi(r {\rm e}^{{\rm i}\theta})]|^{p}\ {\rm d}\theta\\ &\lesssim& \sup_{0\leq r\leq \rho}(1-r^{2})^{q}\int_{0}^{2\pi}|h_{k}[\varphi(r {\rm e}^{{\rm i}\theta})]|^{p}\ {\rm d}\theta +\sup_{\rho< r<1}(1-r^{2})^{q}\int_{0}^{2\pi}\{T_{\rho}(|h_{k}|)(r{\rm e}^{{\rm i}\theta})\}^{p}\ {\rm d}\theta\\ & \lesssim &\sup_{|w|\leq \rho}|h_{k}[\varphi(w)]|^{p}+M_{\rho}^{\alpha_{1}-\alpha}\rightarrow M_{\rho}^{\alpha_{1}-\alpha} \ \ (k\rightarrow\infty). \end{eqnarray*}$

因而当(3.1)式成立时我们有 $\| C_{\varphi}h_{k}\| _{p,q,s}\rightarrow0 \ (k\rightarrow\infty)$. 这表明 $C_{\varphi}$$H^{p,q,s}({\Bbb D})$上的紧算子.

$0<p\leq 1$时, 设 $\alpha=(2+\alpha')/p-2$, 这意味着 $\alpha'>q-1$. 我们选取 $0<\varepsilon<\min\{q,1+\alpha'\}$. 由(3.7)式, 文献[9,引理2.15], Fubini 定理, 文献[9,引理 1.8], 引理 2.4, 文献[9,引理 1.3], 文献[引理 6], 我们可得

$\begin{matrix} &\;& \sup_{0\leq t<1}(1-t^{2})^{q}\int_{0}^{2\pi}|h_{k}[\varphi(t {\rm e}^{{\rm i}\theta})]|^{p}\ {\rm d}\theta \\ &\lesssim& \sup_{0\leq t\leq \rho}(1-t^{2})^{q}\int_{0}^{2\pi}|h_{k}[\varphi(t {\rm e}^{{\rm i}\theta})]|^{p}\ {\rm d}\theta \\ &&+\sup_{\rho< t<1} \int_{{\Bbb D}}|h_{k}(u)|^{p}\left\{\int_{0}^{2\pi}\frac{ (1-t^{2})^{q}(1-|u|^{2})^{\alpha'} \ {\rm d}\theta}{|1- \varphi(t{\rm e}^{{\rm i}\theta})\overline{u}|^{2+\alpha'}}\right\}{\rm d}v(u) \\ &\lesssim& \sup_{|w|\leq \rho}|h_{k}[\varphi(w)]|^{p} + M_{\rho}^{\varepsilon}\sup_{\rho< t<1} \int_{{\Bbb D}}|h_{k}(u)|^{p}(1-|u|^{2})^{\alpha'}\left\{\int_{0}^{2\pi}\frac{ (1-t^{2})^{q-\varepsilon} \ {\rm d}\theta}{|1- u\overline{\varphi(t{\rm e}^{{\rm i}\theta})}|^{2+\alpha'-\varepsilon}}\right\}{\rm d}v(u) \\ & \leq&\sup_{|w|\leq \rho}|h_{k}[\varphi(w)]|^{p}+\sup_{\rho< t<1} \int_{{\Bbb D}}|h_{k}(u)|^{p}\left\{\int_{0}^{2\pi}\frac{M_{\rho}^{\varepsilon}(1-|u|^{2})^{\alpha'} (1-t^{2})^{q-\varepsilon} {\rm d}\theta}{|1- u\overline{\varphi_{a_{0}}(t{\rm e}^{{\rm i}\theta})}|^{2+\alpha'-\varepsilon}}\right\}{\rm d}v(u) \\ & \asymp&\sup_{|w|\leq \rho}|h_{k}[\varphi(w)]|^{p}+\sup_{\rho< t<1} \int_{{\Bbb D}}|h_{k}(u)|^{p}\left\{\int_{0}^{2\pi}\frac{M_{\rho}^{\varepsilon}(1-|u|^{2})^{\alpha'} (1-t^{2})^{q-\varepsilon} {\rm d}\theta}{|1- \overline{\varphi_{a_{0}}(u)}t{\rm e}^{{\rm i}\theta}|^{2+\alpha'-\varepsilon}}\right\}{\rm d}v(u) \\ & \asymp&\sup_{|w|\leq \rho}|h_{k}[\varphi(w)]|^{p}+\sup_{\rho< t<1} \int_{{\Bbb D}}|h_{k}(u)|^{p}\left\{\frac{M_{\rho}^{\varepsilon}(1-|u|^{2})^{\alpha'} (1-t^{2})^{q-\varepsilon}}{(1-t^{2}|\varphi_{a_{0}}(u)|^{2})^{1+\alpha'-\varepsilon}}\right\}{\rm d}v(u) \\ & \lesssim &\sup_{|w|\leq \rho}|h_{k}[\varphi(w)]|^{p}+M_{\rho}^{\varepsilon}\sup_{\rho< t<1} (1-t^{2})^{q-\varepsilon}\int_{{\Bbb D}}\frac{|h_{k}(u)|^{p}(1-|u|^{2})^{\alpha'}\ {\rm d}v(u)}{(1-t|u|)^{1+\alpha'-\varepsilon}} \\ & \lesssim& \sup_{|w|\leq \rho}|h_{k}[\varphi(w)]|^{p}+M_{\rho}^{\varepsilon}\sup_{\rho< t<1} (1-t)^{q-\varepsilon}\| h_{k}\| _{p,q,s}^{p}\int_{0}^{1}\frac{(1-\varrho)^{\alpha'-q}\ {\rm d}\varrho}{(1-t\varrho)^{1+\alpha'-\varepsilon}} \\ &\lesssim &\sup_{|w|\leq \rho}|h_{k}[\varphi(w)]|^{p}+M_{\rho }^{\varepsilon}\rightarrow M_{\rho}^{\varepsilon} \ \ (k\rightarrow\infty). \end{matrix}$

根据(3.1)和(3.15)式可得 $C_{\varphi}$$H^{p,q,s}({\Bbb D})$上的紧算子.

(5) 该结果来自文献[7,定理 3.20].

(6) 如果 $\| \varphi\| _{\infty}<1$, 则任意序列$\{h_{k}\}$满足在${\Bbb D}$的任一紧子集上一致趋于0且 $\| h_{k}\| _{p,q,s}\leq 1$ 对所有 $k$ 成立时有

$\begin{eqnarray*} &&\sup_{0\leq \rho<1}\sup_{a\in {\Bbb D}}(1-\rho^{2})^{q}\int_{0}^{2\pi}|h_{k}[\varphi(\rho {\rm e}^{{\rm i}\theta})]|^{p}(1-|\varphi_{a}(\rho {\rm e}^{{\rm i}\theta})|^{2})^{s}\ {\rm d}\theta \\ &\leq &\max_{|w|\leq \| \varphi\| _{\infty}}|h_{k}(w)|^{p}\sup_{0\leq \rho<1}\sup_{a\in {\Bbb D}}\int_{0}^{2\pi}\frac{(1-\rho^{2})^{q+s}(1-|a|^{2})^{s}\ {\rm d}\theta}{|1-\rho\overline{a} {\rm e}^{{\rm i}\theta}|^{2s}} \\ &\lesssim& \max_{|w|\leq \| \varphi\| _{\infty}}|h_{k}(w)|^{p} \ \rightarrow 0 \ \ (k\rightarrow\infty) \ \Rightarrow \ \mbox{$C_{\varphi}$ 是 $H^{p,q,s}({\Bbb D})$上的紧算子.} \end{eqnarray*}$

(7) 当 $q+1=0$$\| \varphi\| _{\infty}=1$时, 假如 $C_{\varphi}$$H^{p,q,s}({\Bbb D})$上的紧算子, 我们可导出与(3.10)式矛盾.

(8) 对任意 $w\in {\Bbb D}$$t>0$, 设

$f_{w}(z)=\frac{(1-|w|^{2})^{\frac{t}{p}}}{(1-z\overline{w})^{\frac{q+1+t}{p}}} \ \ (z\in {\Bbb D}). $

根据引理 2.5(1)-(6), 容易证明 $\sup \{\| f_{w}\| _{p,q,s}: w\in {\Bbb D}\}\lesssim 1$. 根据$C_{\varphi}$$H^{p,q,s}({\Bbb D})$上的有界性可得(3.3)式成立.

(9) 对任意 $g\in H^{p,q,s}({\Bbb D})$$a\in {\Bbb D}$, 取

$G_{a,g}(w)=\frac{g(w)}{(1-\overline{\varphi(a)}w)^{\frac{2s}{p}}} \ \ (w\in {\Bbb D}). $

根据引理 2.1, 2.2 可得

$G_{a,g}(w)=\int_{{\Bbb D}}\frac{G_{a,g}(u)\ {\rm d}v_{\alpha}(u)}{(1-w\overline{u})^{2+\alpha}} \ \ (w\in {\Bbb D}). $

因此,

$|G_{a,g}[\varphi(z)]|\leq \int_{{\Bbb D}}\frac{|G_{a,g}(u)|\ {\rm d}v_{\alpha}(u)}{|1-\varphi(z) \overline{u}|^{2+\alpha}} \ \ (z\in {\Bbb D}). $

对任意 $0\leq \rho<1$, 若 $p>1$$\max\{0, -q\}<s<1$, 由条件 $\alpha>(q+1)/p-1$ 可选择

$\max\{\alpha, \ q+s-1\}<\alpha_{1}<\min\{p(\alpha+1)-1, \ q+s+\alpha\}. $

当(3.4)式成立时, 根据(3.16)式, Hölder 不等式,

$(1-\rho^{2})/\{1-|\varphi(\rho {\rm e}^{{\rm i}\theta})|^{2}\}\leq \{1+|\varphi(0)|\}/\{1-|\varphi(0)|\}, $

Fubini 定理, 文献[9,引理 1.8],(3.4)式, 文献[引理 6], 我们可得

$\begin{eqnarray*} &\;& (1-\rho^{2})^{q}\int_{0}^{2\pi}|g[\varphi(\rho {\rm e}^{{\rm i}\theta})]|^{p}(1-|\varphi_{a}(\rho {\rm e}^{{\rm i}\theta})|^{2})^{s}\ {\rm d}\theta\\ &\; =&(1-\rho^{2})^{q+s}(1-|a|^{2})^{s}\int_{0}^{2\pi}|G_{a,g}[\varphi(\rho {\rm e}^{{\rm i}\theta})]|^{p}\frac{|1-\overline{\varphi(a)}\varphi(\rho {\rm e}^{{\rm i}\theta})|^{2s}}{|1-\overline{a}\rho {\rm e}^{{\rm i}\theta}|^{2s}}\ {\rm d}\theta\\ &\;\lesssim & (1-\rho^{2})^{q+s}(1-|a|^{2})^{s}\int_{0}^{2\pi}\left\{\int_{{\Bbb D}}\frac{|G_{a,g}(u)|\ {\rm d}v_{\alpha}(u)}{|1-\varphi(\rho {\rm e}^{{\rm i}\theta}) \overline{u}|^{2+\alpha}}\right\}^{p}\frac{|1-\overline{\varphi(a)}\varphi(\rho {\rm e}^{{\rm i}\theta})|^{2s}}{|1-\overline{a}\rho {\rm e}^{{\rm i}\theta}|^{2s}}\ {\rm d}\theta \\ &\; \lesssim & \int_{0}^{2\pi}\int_{{\Bbb D}}\frac{(1-\rho^{2})^{q+s}(1-|a|^{2})^{s}|g(u)|^{p}|1-\overline{\varphi(a)}\varphi(\rho {\rm e}^{{\rm i}\theta})|^{2s} (1-|u|^{2})^{\alpha_{1}}\ {\rm d}v(u){\rm d}\theta}{(1-|\varphi(\rho {\rm e}^{{\rm i}\theta})|^{2})^{\alpha_{1}-\alpha}|1-\varphi(\rho {\rm e}^{{\rm i}\theta}) \overline{u}|^{2+\alpha}|1-\overline{a}\rho {\rm e}^{{\rm i}\theta}|^{2s}|1-\overline{\varphi(a)}u|^{2s}} \\ &\; \lesssim & \int_{0}^{2\pi}\int_{{\Bbb D}}\frac{(1-\rho^{2})^{q+s+\alpha-\alpha_{1}}|g(u)|^{p}|1-\overline{\varphi(a)}\varphi(\rho {\rm e}^{{\rm i}\theta})|^{2s} (1-|u|^{2})^{\alpha_{1}}}{(1-|a|^{2})^{-s}|1-\varphi(\rho {\rm e}^{{\rm i}\theta}) \overline{u}|^{2+\alpha}|1-\overline{a}\rho {\rm e}^{{\rm i}\theta}|^{2s}|1-\overline{\varphi(a)}u|^{2s}}\ {\rm d}v(u){\rm d}\theta \\ &\; =&\int_{{\Bbb D}}\frac{|g(u)|^{p}(1-|u|^{2})^{\alpha_{1}}}{(1-|a|^{2})^{-s}|1-\overline{\varphi(a)}u|^{2s}}\int_{0}^{2\pi}\frac{(1-\rho^{2})^{q+s+\alpha-\alpha_{1}} |1-\overline{\varphi(a)}\varphi(\rho {\rm e}^{{\rm i}\theta})|^{2s}\ {\rm d}\theta {\rm d}v(u)}{|1-\varphi(\rho {\rm e}^{{\rm i}\theta}) \overline{u}|^{2+\alpha}|1-\overline{a}\rho {\rm e}^{{\rm i}\theta}|^{2s}}\\ &\; \lesssim & \int_{0}^{1}(1-r^{2})^{\alpha_{1}-q-s}\int_{0}^{2\pi}(1-r^{2})^{q}|g(r {\rm e}^{{\rm i}\tau})|^{p}(1-|\varphi_{\varphi(a)}(r {\rm e}^{{\rm i}\tau})|^{2})^{s}\\ &\;& \times \left\{\frac{(1-|a|^{2})^{s}}{(1-|\varphi(a)|^{2})^{s}}\int_{0}^{2\pi}\frac{(1-\rho^{2})^{q+s+\alpha-\alpha_{1}}|1-\overline{\varphi(a)}\varphi(\rho {\rm e}^{{\rm i}\theta})|^{2s}\ {\rm d}\theta}{|1-r {\rm e}^{-{\rm i}\tau}\varphi(\rho {\rm e}^{{\rm i}\theta})|^{2+\alpha}|1-\overline{a}\rho {\rm e}^{{\rm i}\theta}|^{2s}}\right\} {\rm d}\tau {\rm d}r\\ &\; \lesssim &(1-\rho)^{q+s+\alpha-\alpha_{1}}\| g\| _{p,q,s}^{p}\int_{0}^{1}\frac{(1-r)^{\alpha_{1}-q-s}}{(1-r\rho)^{\alpha+1}}\ {\rm d}r \lesssim \| g\| _{p,q,s}^{p}. \end{eqnarray*}$

这意味着 $C_{\varphi}$$H^{p,q,s}({\Bbb D})$上的有界算子.

$0<p\leq 1$$\max\{0, -q\}<s<1$ 时, 设 $\alpha=(\alpha'+2)/p-2$.$\alpha>\max\{(q+1)/p-1,$$(q+s+1)/p-2\}$ 知, $\alpha'>q+\max\{s,p\}-1$. 若(3.4)式成立, 由(3.16)式, 文献[9,引理 2.15], Fubini 定理, 文献[9,引理 1.8],(3.4)式, 文献[引理 6], 有

$\begin{eqnarray*} &\;& (1-\rho^{2})^{q}\int_{0}^{2\pi}|g[\varphi(\rho {\rm e}^{{\rm i}\theta})]|^{p}(1-|\varphi_{a}(\rho {\rm e}^{{\rm i}\theta})|^{2})^{s}\ {\rm d}\theta \\ &\; \lesssim &\int_{0}^{2\pi}\int_{{\Bbb D}}\frac{(1-\rho^{2})^{q+s}(1-|a|^{2})^{s}|g(u)|^{p}|1-\overline{\varphi(a)}\varphi(\rho {\rm e}^{{\rm i}\theta})|^{2s}(1-|u|^{2})^{\alpha'}}{|1-\varphi(\rho {\rm e}^{{\rm i}\theta}) \overline{u}|^{2+\alpha'}|1-\overline{a}\rho {\rm e}^{{\rm i}\theta}|^{2s}|1-\overline{\varphi(a)}u|^{2s}}\ {\rm d}\theta {\rm d}v(u) \\ &\; =&\int_{{\Bbb D}}\frac{(1-|a|^{2})^{s}|g(u)|^{p}(1-|u|^{2})^{\alpha'}}{|1-\overline{\varphi(a)}u|^{2s}}\int_{0}^{2\pi}\frac{(1-\rho^{2})^{q+s} |1-\overline{\varphi(a)}\varphi(\rho {\rm e}^{{\rm i}\theta})|^{2s}\ {\rm d}\theta {\rm d}v(u)}{|1-\varphi(\rho {\rm e}^{{\rm i}\theta}) \overline{u}|^{2+\alpha'}|1-\overline{a}\rho {\rm e}^{{\rm i}\theta}|^{2s}}\\ &\; \lesssim &\int_{0}^{1}(1-r^{2})^{\alpha'-q-s}\int_{0}^{2\pi}(1-r^{2})^{q}|g(r {\rm e}^{{\rm i}\tau})|^{p}(1-|\varphi_{\varphi(a)}(r {\rm e}^{{\rm i}\tau})|^{2})^{s}\\ &\;& \times \left\{\int_{0}^{2\pi}\frac{(1-|a|^{2})^{s}(1-\rho^{2})^{q+s}|1-\overline{\varphi(a)}\varphi(\rho {\rm e}^{{\rm i}\theta})|^{2s}\ {\rm d}\theta}{(1-|\varphi(a)|^{2})^{s}|1-r {\rm e}^{-{\rm i}\tau}\varphi(\rho {\rm e}^{{\rm i}\theta})|^{2+\alpha'}|1-\overline{a}\rho {\rm e}^{{\rm i}\theta}|^{2s}}\right\}{\rm d}\tau {\rm d}r \\ &\; \lesssim &(1-\rho)^{q+s}\| g\| _{p,q,s}^{p}\int_{0}^{1}\frac{(1-r)^{\alpha'-q-s}}{(1-r\rho)^{\alpha'+1}}\ {\rm d}r \lesssim \| g\| _{p,q,s}^{p}. \end{eqnarray*}$

这表明 $C_{\varphi}$$H^{p,q,s}({\Bbb D})$ 上的有界算子.

(10) 设 $\{h_{k}\}$ 是任一在 ${\Bbb D}$ 的任一紧子集上一致趋于0 且满足 $\| h_{k}\| _{p,q,s}\leq 1$ 对所有 $k\in \{1,2,\cdots\}$ 成立的序列. 设 $1/2<\rho<1$.$p>1$ 时, 类似(3.14)式的证明, 根据(3.16)和(3.4)式可得

$\begin{eqnarray*} &\;& \sup_{0\leq r<1}(1-r^{2})^{q}\int_{0}^{2\pi}|h_{k}[\varphi(r{\rm e}^{{\rm i}\theta})]|^{p}(1-|\varphi_{a}(r{\rm e}^{{\rm i}\theta})|^{2})^{s}\ {\rm d}\theta\\ &\lesssim& \max_{|u|\leq \rho}|h_{k}[\varphi(u)]|^{p} +\sup_{\rho<r<1}(1-r^{2})^{q}\\ &&\times \int_{0}^{2\pi}(1-|\varphi_{a}(r{\rm e}^{{\rm i}\theta})|^{2})^{s}|G_{a,h_{k}}[\varphi(r{\rm e}^{{\rm i}\theta})]| ^{p}|1-\overline{\varphi(a)}\varphi(r{\rm e}^{{\rm i}\theta})|^{2s}\ {\rm d}\theta\\ & \lesssim& \max_{|u|\leq \rho}|h_{k}[\varphi(u)]|^{p}+M_{\rho}^{\alpha_{1}-\alpha}\sup_{\rho<r<1}(1-r^{2}) ^{q+s+\alpha-\alpha_{1}}(1-|a|^{2})^{s} \\ &\;& \times \int_{{\Bbb D}}\frac{|h_{k}(u)|^{p}(1-|u|^{2})^{\alpha_{1}}}{|1-\varphi(a)\overline{u}|^{2s}} \left\{\int_{0}^{2\pi}\frac{|1-\overline{\varphi(a)}\varphi(r{\rm e}^{{\rm i}\theta})|^{2s} \ {\rm d}\theta}{|1-\varphi(r{\rm e}^{{\rm i}\theta})\overline{u}|^{2+\alpha}|1-r\overline{a}{\rm e}^{{\rm i}\theta}|^{2s}}\right\}{\rm d}v(u) \\ & \lesssim &\max_{|u|\leq \rho}|h_{k}[\varphi(u)]|^{p}+M_{\rho}^{\alpha_{1}-\alpha}\sup_{\rho<r<1}(1-r^{2})^{q+s+\alpha-\alpha_{1}}\\ \\ &\;& \times \int_{0}^{1}\frac{(1-t)^{\alpha_{1}-q-s}}{(1-rt)^{\alpha+1}}\left\{\int_{0}^{2\pi}(1-t^{2})^{q}|h_{k}(t{\rm e}^{{\rm i}\tau})|^{p}(1-|\varphi_{\varphi(a)}(t{\rm e}^{{\rm i}\tau})|^{2})^{s}\ {\rm d}\tau\right\}{\rm d}t \\ & \lesssim &\max_{|u|\leq \rho}|h_{k}[\varphi(u)]|^{p}+M_{\rho}^{\alpha_{1}-\alpha}\rightarrow M_{\rho}^{\alpha_{1}-\alpha} \ \ ( k\rightarrow\infty). \end{eqnarray*}$

$0<p\leq 1$ 时, 我们选取 $0<\varepsilon<\min\{q+s, 1+\alpha'-q-\max\{s,p\}\}$. 类似(3.15)式的证明, 根据(3.16)和(3.4)式可得

$\begin{eqnarray*} &\;& \sup_{0\leq r<1,a\in D}(1-r^{2})^{q}\int_{0}^{2\pi}|h_{k}[\varphi(r{\rm e}^{{\rm i}\theta})]|^{p}(1-|\varphi_{a}(r{\rm e}^{{\rm i}\theta})|^{2})^{s}\ {\rm d}\theta\\ &\; \lesssim &\sup_{0\leq r\leq \rho,a\in D}(1-r^{2})^{q}\int_{0}^{2\pi}|h_{k}[\varphi(r {\rm e}^{{\rm i}\theta})]|^{p}(1-|\varphi_{a}(r{\rm e}^{{\rm i}\theta})|^{2})^{s}\ {\rm d}\theta+(1-|a|^{2})^{s}\\ &\;& \times\sup_{\rho< r<1,a\in D} \int_{{\Bbb D}}\frac{|h_{k}(u)|^{p}(1-|u|^{2})^{\alpha'}}{|1-\overline{\varphi(a)}u|^{2s}}\int_{0}^{2\pi}\frac{ (1-r^{2})^{q+s}|1-\overline{\varphi(a)}\varphi(r{\rm e}^{{\rm i}\theta})|^{2s} \ {\rm d}\theta}{|1- u\overline{\varphi(r{\rm e}^{{\rm i}\theta})}|^{2+\alpha'}|1-r\overline{a}{\rm e}^{{\rm i}\theta}|^{2s}}\ {\rm d}v(u) \\ &\;\lesssim &\sup_{|w|\leq \rho}|h_{k}[\varphi(w)]|^{p}+\sup_{\rho<r<1,a\in D}M_{\rho}^{\varepsilon}(1-r^{2})^{q+s-\varepsilon}(1-|a|^{2})^{s}\\ &\;& \times \ \int_{{\Bbb D}}\frac{|h_{k}(u)|^{p}(1-|u|^{2})^{\alpha'}}{|1-\overline{\varphi(a)}u|^{2s}}\left\{\int_{0}^{2\pi}\frac{ |1-\overline{\varphi(a)}\varphi(r{\rm e}^{{\rm i}\theta})|^{2s} \ {\rm d}\theta}{|1- u\overline{\varphi(r{\rm e}^{{\rm i}\theta})}|^{2+\alpha'-\varepsilon}|1-r\overline{a}{\rm e}^{{\rm i}\theta}|^{2s}}\right\}{\rm d}v(u) \\ &\;\lesssim &\sup_{|w|\leq \rho}|h_{k}[\varphi(w)]|^{p} +M_{\rho}^{\varepsilon}\sup_{\rho<r<1}(1-r)^{q+s-\varepsilon}\| h_{k}\| _{p,q,s}^{p} \int_{0}^{1}\frac{(1-t)^{\alpha'-q-s}}{(1-rt)^{1+\alpha'-\varepsilon}} \ {\rm d}t \\ &\;\lesssim &\sup_{|w|\leq \rho}|h_{k}[\varphi(w)]|^{p}+M_{\rho}^{\varepsilon}\rightarrow M_{\rho}^{\varepsilon} \ \ (k\rightarrow\infty). \end{eqnarray*}$

根据(3.1)式可得 $C_{\varphi}$$H^{p,q,s}({\Bbb D})$ 上的紧算子.

本定理证完.

根据文献[5,命题3.3]可知, 如果 $0<s<1$, 则 $H^{\frac{p}{q+1}}({\Bbb D})\subsetneq H^{p,q,s}({\Bbb D})$. 进一步, 我们有下列结果.

定理 3.2$0<s<1$ 以及 $\varphi: \ {\Bbb D}\rightarrow {\Bbb D}$ 是一个解析映射.

(1) $C_{\varphi}$ 总是 $H^{\frac{p}{q+1}}({\Bbb D})$$H^{p,q,s}({\Bbb D})$ 的有界算子.

(2) 若 $C_{\varphi}$$H^{\frac{p}{q+1}}({\Bbb D})$$H^{p,q,s}({\Bbb D})$ 的紧算子, 则(3.1)式成立.

(3) 若(3.2)式成立, 则 $C_{\varphi}$$H^{\frac{p}{q+1}}({\Bbb D})$$H^{p,q,s}({\Bbb D})$ 的紧算子.

(1) 对任意 $f\in H^{\frac{p}{q+1}}({\Bbb D}) $, 当$-1<q<0$ 时, 根据 H"{o}lder 不等式, 引理 2.3, $C_{\varphi}$$H^{\frac{p}{q+1}}({\Bbb D})$ 上的有界性, 我们可得

$\begin{eqnarray*} \| C_{\varphi}f\| _{p,q,s}^{p}&\leq& \sup_{0\leq r<1}\sup_{ a\in {\Bbb D}}(1-r^{2})^{q+s}(1-|a|^{2})^{s} \\ &&\times\left\{\int_{0}^{2\pi}|f[\varphi(r{\rm e}^{{\rm i}\theta})]|^{\frac{p}{q+1}}\ {\rm d}\theta\right\}^{q+1}\left\{\int_{0}^{2\pi}\frac{{\rm d}\theta}{|1- \overline{a}r{\rm e}^{{\rm i}\theta}|^{\frac{2s}{-q}}}\right\}^{-q} \\ &\lesssim &\sup_{0\leq r<1}\sup_{ a\in {\Bbb D}}\frac{(1-r^{2})^{q+s}(1-|a|^{2})^{s}\| f\| ^{p}_{\frac{p}{q+1},0,0}}{(1-r^{2}|a|^{2})^{q+2s}}\lesssim \| f\| ^{p}_{\frac{p}{q+1},0,0}. \end{eqnarray*}$

$q\geq 0$ 时, 设 $p_{0}=1/(q+1)$. 由引理 2.6 及 $C_{\varphi}$$H^{pp_{0}}({\Bbb D})$ 上的有界性可得

$\begin{eqnarray*} \| C_{\varphi}f\| _{p,q,s}^{p}&\leq& \sup_{0\leq r<1}(1-r^{2})^{q}\int_{0}^{2\pi}|f[\varphi(r{\rm e}^{{\rm i}\theta})]|^{p}\ {\rm d}\theta \\ &\leq& \sup_{0\leq r<1}\frac{(1-r^{2})^{q}}{(1-r^{2})^{\frac{1-p_{0}}{p_{0}}}}\| C_{\varphi}f\| _{pp_{0},0,0}^{p}\lesssim\| f\| _{\frac{p}{q+1},0,0}^{p}. \end{eqnarray*}$

这表明 $C_{\varphi}$ 总是$H^{\frac{p}{q+1}}({\Bbb D})$$H^{p,q,s}({\Bbb D})$的有界算子.

(2) 若 $C_{\varphi}$$H^{\frac{p}{q+1}}({\Bbb D})$$H^{p,q,s}({\Bbb D})$ 的紧算子, 根据(3.10)式可得(3.1)式成立.

(3) 设 $\{h_{k}\}$ 是任一在 ${\Bbb D}$ 的任一紧子集上一致趋于0 且满足$\| h_{k}\| _{\frac{p}{q+1},0,0}\leq 1$ 对所有 $k\in \{1,2,\cdots\}$ 成立的序列. 当 $-1<q<0$ 时, 有

$\begin{eqnarray*} \| C_{\varphi}h_{k}\| _{p,q,s}^{p} &\lesssim& \sup_{0\leq r<1}\sup_{ a\in {\Bbb D}}\frac{(1-r^{2})^{q+s}(1-|a|^{2})^{s}}{(1-r^{2}|a|^{2})^{q+2s}}\left\{\int_{0}^{2\pi}|h_{k}[\varphi(r{\rm e}^{{\rm i}\theta})]|^{\frac{p}{q+1}}\ \frac{{\rm d}\theta}{2\pi}\right\}^{q+1} \\ &\leq&\sup_{0\leq r<1}\left\{\int_{0}^{2\pi}|h_{k}[\varphi(r{\rm e}^{{\rm i}\theta})]|^{\frac{p}{q+1}}\ \frac{{\rm d}\theta}{2\pi}\right\}^{q+1}= \| C_{\varphi}h_{k}\| _{\frac{p}{q+1},0,0}^{p}. \end{eqnarray*}$

$q\geq 0$ 时, 可得

$\| C_{\varphi}h_{k}\| _{p,q,s}^{p} \leq \sup_{0\leq r<1}\frac{(1-r^{2})^{q}}{(1-r^{2})^{\frac{1-p_{0}}{p_{0}}}}\left\{\int_{0}^{2\pi}|h_{k}[\varphi(\sqrt{r}{\rm e}^{{\rm i}\theta})]|^{\frac{p}{q+1}}\ \frac{{\rm d}\theta}{2\pi}\right\}^{q+1}= \| C_{\varphi}h_{k}\| _{\frac{p}{q+1},0,0}^{p}. $

如果(3.2)式成立, 根据 Hardy空间的结论有

$\lim_{k\rightarrow\infty}\| C_{\varphi}h_{k}\| _{\frac{p}{q+1},0,0}=0. \ \ \mbox{因此,} \ \ \lim_{k\rightarrow\infty}\| C_{\varphi}h_{k}\| _{p,q,s}=0.$

这表明 $C_{\varphi}$$H^{\frac{p}{q+1}}({\Bbb D})$$H^{p,q,s}({\Bbb D})$ 的紧算子. 本定理证完.

参考文献

Stević S, Ueki S I.

Weighted composition operators from the weighted Bergman space to the weighted Hardy space on the unit ball

Appl Math Comput, 2010, 215: 3526-3533

[本文引用: 2]

Čučković Z, Zhao R H.

Weighted composition operators between different weighted Bergman spaces and different Hardy spaces

IIlinois J of Math, 2007, 51(2): 479-498

[本文引用: 2]

Ueki S I, Luo L. Compact weighted composition operators and multiplication operators between Hardy spaces. Abstr Appl Anal, 2008, Article ID: 196498

[本文引用: 2]

Zhang X J, Lv R X, Tang P C.

Several equivalent characterizations of general Hardy type spaces on the unit ball in $ {\Bbb C}^{\it n}$

Chin J Conte Math, 2019, 40(2): 101-114

[本文引用: 3]

Li S L, Zhang X J.

Toeplitz type operator and Gleason's problem on $H^{p,q,s}(B)$ of ${\Bbb C}^{n}$

Complex Var Ellip Equat, 2021, 66(8): 1362-1379

[本文引用: 6]

Xu S, Zhang X J.

Multiplier and composition operator between several holomorphic function spaces in ${{\Bbb C}^{\it n}}$

Complex Anal Oper Theory, 2021, 15(2), Article number: 36

[本文引用: 2]

Cowen C C, MacCluer B D. Composition Operators on Spaces of Analytic Functions. Boca Raton: CRC Press, 1995

[本文引用: 2]

Zhu K H.

Operator Theory in Function Spaces

Providence, RI: Amer Math Soc, 2007

[本文引用: 1]

Zhu K H. Spaces of Holomorphic Functions in the Unit Ball. New York: Springer-Verlag, 2005

[本文引用: 15]

Rudin W. Function Theory in the Unit Ball of ${\Bbb C}^n$. New York: Springer-Verlag, 1980

[本文引用: 2]

Shields A, Williams D.

Bounded projections, duality and multipliers in space of analytic functions

Trans Amer Math Soc, 1971, 167: 253-268

[本文引用: 1]

Littlewood J.

On inequalities in the theory of functions

Proc London Math Soc, 1925, 23(2): 481-519

[本文引用: 3]

Tang X M.

Essential norms of weighted composition operators from Bloch-type space to $H^{\infty}$ on the unit ball

Complex Anal Oper Theory, 2015, 9(1): 229-244

DOI:10.1007/s11785-014-0410-2      URL     [本文引用: 1]

Ye S L.

Weighted composition operators from $F(p,q,s)$ into logarithmic Bloch space

J Kore Math Soc, 2008, 45(4): 977-991

[本文引用: 1]

Zhou Z H, Chen R Y.

Weighted composition operator from $F(p,q,s)$ to Bloch type spaces on the unit ball

Int J Math, 2008, 19(8): 899-926

DOI:10.1142/S0129167X08004984      URL     [本文引用: 1]

张学军, 李菊香.

${\Bbb C}^n$中单位球上$\mu$-Bloch空间之间的复合算子

数学物理学报, 2009, 29A(3): 573-583

[本文引用: 1]

Zhang X J, Li J X.

Weighted composition operators between $\mu$-Bloch spaces on the unit ball of ${\Bbb C}^n$

Acta Math Sci, 2009, 29A(3): 573-583

[本文引用: 1]

Li S L, Zhang X J, Xu S.

The compact composition operator on the $\mu$-Bergman space in the unit ball

Acta Math Sci, 2017, 37B(2): 425-438

[本文引用: 1]

/