数学物理学报 ›› 2023, Vol. 43 ›› Issue (1): 53-68.
收稿日期:
2021-12-09
修回日期:
2022-10-17
出版日期:
2023-02-26
发布日期:
2023-03-07
通讯作者:
*徐家发, E-mail: 作者简介:
杨志春, E-mail: 基金资助:
Received:
2021-12-09
Revised:
2022-10-17
Online:
2023-02-26
Published:
2023-03-07
Supported by:
摘要:
该文研究了具有半正非线性项和脉冲项的高阶Riemann-Liouville型分数阶脉冲微分方程积分边值问题. 利用不动点指数理论, 在超线性增长和次线性增长等条件下获得了该问题正解的存在性结论, 推广了近期这方面一些已有的成果.
中图分类号:
徐家发, 杨志春. 高阶Riemann-Liouville型分数阶脉冲微分方程积分边值问题的正解[J]. 数学物理学报, 2023, 43(1): 53-68.
Xu Jiafa, Yang Zhichun. Positive Solutions for a High Order Riemann-Liouville Type Fractional Impulsive Differential Equation Integral Boundary Value Problem[J]. Acta mathematica scientia,Series A, 2023, 43(1): 53-68.
[1] |
Wang Y, Liu L, Zhang X, Wu Y. Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection. Applied Mathematics and Computation, 2015, 258: 312-324
doi: 10.1016/j.amc.2015.01.080 |
[2] | Zhong Q, Zhang X, Gu L, Lei L, Zhao Z. Multiple positive solutions for singular higher-order semipositone fractional differential equations with $p$-Laplacian. Nonlinear Analysis: Modelling and Control, 2020, 25(5): 806-826 |
[3] |
Hao X, Sun H, Liu L, Wang D. Positive solutions for semipositone fractional integral boundary value problem on the half-line. RACSAM, 2019, 113(4): 3055-3067
doi: 10.1007/s13398-019-00673-w |
[4] | Ding Y, Jiang J, O'Regan D, Xu J. Positive solutions for a system of Hadamard-type fractional differential equations with semipositone nonlinearities. Complexity, 2020, Aarticle ID 9742418 |
[5] |
Xu J, Goodrich C, Cui Y. Positive solutions for a system of first-order discrete fractional boundary value problems with semipositone nonlinearities. RACSAM, 2019, 113(2): 1343-1358
doi: 10.1007/s13398-018-0551-7 |
[6] |
Yang W. Positive solutions for nonlinear semipositone fractional $q$-difference system with coupled integral boundary conditions. Applied Mathematics and Computation, 2014, 244: 702-725
doi: 10.1016/j.amc.2014.07.039 |
[7] |
Yuan C. Two positive solutions for $(n-1,1)$-type semipositone integral boundary value problems for coupled systems of nonlinear fractional differential equations. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(2): 930-942
doi: 10.1016/j.cnsns.2011.06.008 |
[8] | Xu X, Jiang D, Yuan C. Multiple positive solutions to singular positone and semipositone Dirichlet-type boundary value problems of nonlinear fractional differential equations. Nonlinear Analysis: Theory Methods & Applications, 2011, 74(16): 5685-5696 |
[9] | Henderson J, Luca R. Existence of positive solutions for a system of semipositone fractional boundary value problems. Electronic Journal of Qualitative Theory of Differential Equations, 2016, 22: 1-28 |
[10] |
Ege S, Topal F. Existence of multiple positive solutions for semipositone fractional boundary value problems. Filomat, 2019, 33(3): 749-759
doi: 10.2298/FIL1903749E |
[11] |
Xu J, Wei Z, Ding Y. Positive solutions for a boundary-value problem with Riemann-Liouville fractional derivative. Lithuanian Mathematical Journal, 2012, 52(4): 462-476
doi: 10.1007/s10986-012-9187-z |
[12] |
Jie Z, Feng M. Green's function for Sturm-Liouville-type boundary value problems of fractional order impulsive differential equations and its application. Boundary Value Problems, 2014, 2014: Article 69
doi: 10.1186/1687-2770-2014-69 |
[13] |
Wang G, Ahmad B, Zhang L. Some existence results for impulsive nonlinear fractional differential equations with mixed boundary conditions. Computers and Mathematics with Applications, 2011, 62: 1389-1397
doi: 10.1016/j.camwa.2011.04.004 |
[14] |
Zhang K, Xu J. Positive solutions for an impulsive boundary value problem with Caputo fractional derivative. Journal of Nonlinear Sciences and Applications, 2016, 9(6): 4628-4638
doi: 10.22436/jnsa.009.06.101 |
[15] |
Zhao K. Impulsive integral boundary value problems of the higher-order fractional differential equation with eigenvalue arguments. Advances in Difference Equations, 2015, 2015: Article 382
doi: 10.1186/s13662-015-0725-y |
[16] |
Ahmad B, Sivasundaram S. Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations. Nonlinear Analysis: Hybrid Systems, 2009, 3(3): 251-258
doi: 10.1016/j.nahs.2009.01.008 |
[17] |
Ahmad B, Sivasundaram S. Existence of solutions for impulsive integral boundary value problems of fractional order. Nonlinear Analysis: Hybrid Systems, 2010, 4(1): 134-141
doi: 10.1016/j.nahs.2009.09.002 |
[18] |
Wang G, Ahmad B, Zhang L, Nieto J. Comments on the concept of existence of solution for impulsive fractional differential equations. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(3): 401-403
doi: 10.1016/j.cnsns.2013.04.003 |
[19] |
Bouzaroura A, Mazouzi S. Existence results for certain multi-orders impulsive fractional boundary value problem. Results in Mathematics, 2014, 66(1/2): 1-20
doi: 10.1007/s00025-014-0403-5 |
[20] |
Tian Y, Bai Z. Existence results for the three-point impulsive boundary value problem involving fractional differential equations. Computers & Mathematics with Applications, 2010, 59(8): 2601-2609
doi: 10.1016/j.camwa.2010.01.028 |
[21] |
Fu X, Bao X. Some existence results for nonlinear fractional differential equations with impulsive and fractional integral boundary conditions. Advances in Difference Equations, 2014, 2014: Article 129
doi: 10.1186/1687-1847-2014-129 |
[22] |
Liu Z, Lu L, Szanto I. Existence of solutions for fractional impulsive differential equations with $p$-Laplacian operator. Acta Mathematica Hungarica, 2013, 141(3): 203-219
doi: 10.1007/s10474-013-0305-0 |
[23] |
Zhao X, Ge W. Some results for fractional impulsive boundary value problems on infinite intervals. Applications of Mathematics, 2011, 56(4): 371-387
doi: 10.1007/s10492-011-0021-4 |
[24] |
Liu Y. Solvability of impulsive periodic boundary value problems for higher order fractional differential equations. Arabian Journal of Mathematics, 2016, 5(4): 195-214
doi: 10.1007/s40065-016-0153-1 |
[25] |
Wang H, Lin X. Anti-periodic BVP of fractional order with fractional impulsive conditions and variable parameter. Journal of Applied Mathematics and Computing, 2017, 53(1/2): 285-301
doi: 10.1007/s12190-015-0968-5 |
[26] | El-shahed M. Positive solutions for boundary-value problems of nonlinear fractional differential equation. Abstract and Applied Analysis, 2007, ID: 010368 |
[27] | Kilbas A, Srivastava H, Trujillo J. Theory and Applications of Fractional Differential Equations. Amsterdam: NorthHolland, 2006 |
[28] | Podlubny I. Fractional Differential Equations, Mathematics in Science and Engineering, Vol 198. San Diego: Academic Press, 1999 |
[29] | Samko S, Kilbas A, Marichev O. Fractional Integrals and Derivatives: Theory and Applications. Yverdon: Gordon and Breach Science Publisher, 1993 |
[30] | Guo D, Lakshmikantham V. Nonlinear Problems in Abstract Cones. Orlando: Academic Press, 1988 |
[1] | 康笑东, 范虹霞. 一类具有瞬时脉冲的二阶发展方程的近似可控性[J]. 数学物理学报, 2023, 43(2): 421-432. |
[2] | 廖丹, 张慧萍, 姚旺进. 基于变分方法的脉冲微分方程 Neumann 边值问题多重解的存在性[J]. 数学物理学报, 2023, 43(2): 447-457. |
[3] | 刘文杰,谢胜利. 脉冲无穷时滞中立型测度微分方程mild解的存在性[J]. 数学物理学报, 2022, 42(6): 1671-1681. |
[4] | 李强,刘立山. 具有周期脉冲的分数阶发展方程周期mild解的存在性[J]. 数学物理学报, 2022, 42(5): 1433-1450. |
[5] | 谢亚君,马昌凤. 源于自由边值离散的弱非线性互补问题的m+1阶收敛性算法[J]. 数学物理学报, 2022, 42(5): 1506-1516. |
[6] | 段誉,孙歆. 渐近线性Klein-Gordon-Maxwell系统正解的存在性[J]. 数学物理学报, 2022, 42(4): 1103-1111. |
[7] | 王振国. 依赖参数的2 |
[8] | 赵才地,姜慧特,李春秋,TomásCaraballo. 脉冲离散Ginzburg-Landau方程组的统计解及其极限行为[J]. 数学物理学报, 2022, 42(3): 784-806. |
[9] | 张伟强,赵培浩. 分数阶Choquard方程正解的存在性、多重性和集中现象[J]. 数学物理学报, 2022, 42(2): 470-490. |
[10] | 段磊,陈天兰. 带平均曲率算子的离散混合边值问题凸解的存在性[J]. 数学物理学报, 2022, 42(2): 379-386. |
[11] | 胡蝶,高琦. 含有对数非线性项Kirchhoff方程多解的存在性[J]. 数学物理学报, 2022, 42(2): 401-417. |
[12] | 赵童,袁海龙,郭改慧. 一类具有修正的Leslie-Gower项的捕食-食饵模型的正解[J]. 数学物理学报, 2022, 42(1): 176-186. |
[13] | 韩晓玲,蔡蕙泽,杨虎军. 星图上非线性分数阶微分方程边值问题解的存在唯一性[J]. 数学物理学报, 2022, 42(1): 139-156. |
[14] | 夏晨阳,王振辉,程志波. 一类带阻尼的吸引型奇性Duffing方程周期正解的存在性[J]. 数学物理学报, 2022, 42(1): 131-138. |
[15] | 储昌木,蒙璐. 一类带有变指数增长的半线性椭圆方程正解的存在性[J]. 数学物理学报, 2021, 41(6): 1779-1790. |
|