[1] |
Diakonikolas J, Orecchia L. The approximate duality gap technique: a unified theory of first-order methods. SIAM J Optim, 2019, 29(1): 660-689
doi: 10.1137/18M1172314
|
[2] |
Son T Q, Strodiot J J, Nguyen V H. $\varepsilon$-optimality and $\varepsilon$-Lagrangian duality for a nonconvex programming problem with an infinite number of constraints. J Optim Theory Appl, 2009, 141(2): 389-409
doi: 10.1007/s10957-008-9475-2
|
[3] |
Scovel C, Hush D, Steinwart I. Approximate duality. J Optim Theory Appl, 2007, 135(3): 429-443
doi: 10.1007/s10957-007-9281-2
|
[4] |
Tuyen N V, Wen C F, Son T Q. An approach to characterizing $\epsilon$-solution sets of convex programs. Top, 2022, 30: 249-269
doi: 10.1007/s11750-021-00616-y
|
[5] |
Boncea H V, Grad S M. Characterizations of $\epsilon$-duality gap statements for constrained optimization problems. Cent Eur J Math, 2013, 11(11): 2020-2033
|
[6] |
Fang D H, Tian L P, Zhang T. Characterizations of $\varepsilon$-duality gap statements and $\varepsilon$-optimality conditions for composite optimization problems with conic constraints. J Nonlinear Convex Anal, 2021, 22(2): 265-285
|
[7] |
Mishra S K, Singh Y, Verma R U. Saddle point criteria in nonsmooth semi-infinite minimax fractional programming problems. J Syst Sci Complex, 2018, 31(2): 446-462
doi: 10.1007/s11424-017-6085-9
|
[8] |
Bot R I, Hodrea I B, Wanka G. Farkas-type results for fractional programming problems. Nonlinear Anal, 2007, 67(6): 1690-1703
doi: 10.1016/j.na.2006.07.041
|
[9] |
Sun X K, Tang L P, Long X J, et al. Some dual characterizations of Farkas-type results for fractional programming problems. Optim Lett, 2018, 12(6): 1403-1420
doi: 10.1007/s11590-017-1196-8
|
[10] |
Sun X K, Long X J, Tang L P. Regularity conditions and Farkas-type results for systems with fractional functions. RAIRO-Oper Res, 2020, 54(5): 1369-1384
doi: 10.1051/ro/2019070
|
[11] |
Sun X K, Chai Y, Zeng J. Farkas-type results for constrained fractional programming with DC functions. Optim Lett, 2014, 8(8): 2299-2313
doi: 10.1007/s11590-014-0737-7
|
[12] |
Zhang X H, Cheng C Z. Some Farkas-type results for fractional programming problems with DC functions. Nonlinear Anal: RWA, 2009, 10(3): 1679-1690
doi: 10.1016/j.nonrwa.2008.02.006
|
[13] |
Dinkelbach W. On nonlinear fractional programming. Manag Sci, 1967, 13(7): 492-498
|
[14] |
方东辉, 刘伟玲. 带复合函数的分式优化问题的 Farkas 引理. 数学物理学报, 2018, 38A(5): 842-854
|
|
Fang D H, Liu W L. The Farkas lemmas for fractional optimization problem with composite functions. Acta Math Sci, 2018, 38A(5): 842-854
|
[15] |
冯欣怡, 孙祥凯. 一类带 DC 函数的分式优化问题的 Farkas 引理刻画. 数学物理学报, 2021, 41A(3): 827-836
|
|
Feng X Y, Sun X K. Characterizations of Farkas lemmas for a class of fractional optimization with DC functions. Acta Math Sci, 2021, 41A(3): 827-836
|
[16] |
Z$\hat{a}$linescu C. Convex Analysis in General Vector Spaces. New Jersey: World Scientific, 2002
|
[17] |
Fang D H, Li C, Ng K F. Constraint qualifications for extended Farkas's lemmas and Lagrangian dualities in convex infinite programming. SIAM J Optim, 2009, 20(3): 1311-1332
doi: 10.1137/080739124
|