Processing math: 40%

数学物理学报, 2023, 43(1): 203-218

迁移率互异的可压电扩散模型的拟中性极限

姜利敏,1,*, 贺金满,1,2

1中原工学院理学院 郑州450007

2郑州大学数学与统计学院 郑州450001

Quasi-Neutral Limit of Compressible Electro-Diffusion System with the Different Mobilities

Jiang Limin,1,*, He Jinman,1,2

1College of Science, Zhongyuan University of Technology, Zhengzhou 450007

2College of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001

通讯作者: *姜利敏, E-mail: ajiang2001@126.com

收稿日期: 2022-03-21   修回日期: 2022-08-5  

基金资助: 国家自然科学基金(12102492)
河南省高等学科重点科研项目(22A110027)
河南省博士后基金

Received: 2022-03-21   Revised: 2022-08-5  

Fund supported: The NSFC(12102492)
Key Research Projects of Henan Higher Education Institutions(22A110027)
Henan Postdoctoral Foundation

作者简介 About authors

贺金满,E-mail:hejinman1026@163.com

摘要

该文应用 Sobolev 嵌入不等式、Green 公式以及加权的能量方法, 研究了电解液中迁移率互异的可压电扩散模型(Planck-Nernest-Poisson-Navier-Stokes) 的拟中性极限.

关键词: 能量方法; 拟中性极限; 索伯列夫不等式

Abstract

In this paper, by using the Sobolev inequality, the Green formula coupling and the elaborate energy method, we study the quasi-neutral limit of compressible Planck-Nernest-Poisson-Navier-Stokes(PNPNS) system with the general mobilities of two kinds of charges, which arises in the electro-hydrodynamics.

Keywords: Energy method; Quasi-neutral limit; Sobolev inequality

PDF (333KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

姜利敏, 贺金满. 迁移率互异的可压电扩散模型的拟中性极限[J]. 数学物理学报, 2023, 43(1): 203-218

Jiang Limin, He Jinman. Quasi-Neutral Limit of Compressible Electro-Diffusion System with the Different Mobilities[J]. Acta Mathematica Scientia, 2023, 43(1): 203-218

1 引言

该文研究了迁移率互异的可压电扩散模型PNPNS(Planck Nernest Poisson Navier Stokes) 的拟中性极限[1-2]. 该系统为

nλt=div(μn(nλnλϕλ)nλvλ),
(1.1)
pλt=div(μp(pλ+pλϕλ)pλvλ),
(1.2)
λ2divEλ=nλpλD(x),
(1.3)
(ρλvλ)t+div(ρλvλvλ)+A(ρλ)2=μΔvλ+divvλ+(nλpλ)ϕλ,
(1.4)
ρλt+div(ρλvλ)=0,
(1.5)

初始条件

(nλ,pλ,vλ,ρλ)(x,0)=(nλ0(x),pλ0(x),vλ0(x),ρλ0(x)),
(1.6)

其中xT3,t>0, T3R3中的周期区域; 函数nλ, pλ, ϕλ, vλ, ρλ 分别为负电荷浓度, 正电荷浓度, 电势, 电解液的速度和压力. 令Eλ=ϕλ为电场. 参数λ>0 表示标量化的Debye长度, 通常很小. 参数μ>0为粘性系数. D(x)为已知的掺杂分布函数. 参数μn, μp为互异的迁移率, 且都为常数. A 为任意的常数. 初始值nλ0(x), pλ0(x), vλ0(x)为光滑函数, 满足

T3(nλ0pλ0D(x))dx=0.
(1.7)

应用公式

div(aˉb)=(diva)b+(a)b,
(1.8)

方程(1.4)可以简化为

ρλvλt+ρλvλvλ+A(ρλ)2=μΔvλ+divvλ+(nλpλ)ϕλ.
(1.9)

假设, 当λ0时, 有(nλ,pλ,Eλ,ρλ,vλ)(n,p,ε,ρ,v) 成立, 其中 ε=ϕ, 那么形式上系统(1.1)-(1.3),(1.5),(1.9)式有极限系统为

nt=div(μn(n+nε)nv),
(1.10)
pt=div(μp(ppε)pv),
(1.11)
0=npD(x),
(1.12)
ρvt+ρvv+A(ρ2)μv=divv(np)ε,
(1.13)
ρt+div(ρv)=0,
(1.14)

初始条件为

(n,p,ρ,v)(x,0)=(n0,p0,ρ0,v0)(x),
(1.15)

其中n0(x), p0(x), ρ0(x),v0(x)为光滑函数, 并且满足下面的条件

n0p0D(x)=0.
(1.16)

据作者所知, 关于此系统的一些结论. 在掺杂函数光滑的假设下, Li[3]证明了不可压电解液中电扩散方程的拟中性极限. Wang等[4] 研究了三维空间下带有不同迁移率电解液中不可压电扩散模型的拟中性极限和边界层问题. Wang等[5]研究了电解液中不可压电扩散模型的初始层问题. Yang等[6]研究了一般初值下量子 Navier-Stokes-Poisson 方程到不可压 Euler方程的收敛性问题. Liu等[7] 研究了三维空间中 Prandtl 非正定性. 拟中性问题被国内外专家学者广泛关注,并且有很多有意义的结论, 比如文献[8-19] 以及其参考文献.

该文主要研究迁移率互异的不可压PNPNS(1.1)-(1.6)的拟中性极限,并假设两个迁移率μnμp的差适当小. 该文区别于不可压PNPNS 系统主要在于方程(1.5), 由于方程(1.5)中的散度不再是0, 这给能量估计带来很多困难, 比如不等式(3.21)的项. 幸运的是,通过借助不等式(3.22)-(3.23), 这些困难可以被很好的解决. 另外, 随着能量估计变得更加复杂, 该文中引入的两个λ -加权的Lyapunov 函数(1.19)-(1.20)也变得复杂.

该文通过奇异摄动理论中的渐近匹配展开和加权的能量估计证明该文的结论. 该文的一个技巧是应用|μnμp|的小性, 因为这样能保证系统是严格的抛物- 椭圆型系统, 可以直接应用相关结论. 为证明该文结论, 引入Gronwall型熵积分不等式

Γλ(t)+t0Gλ(s)dsM˜Γλ(t=0)+Mt0(Γλ(s)+(Γλ(s))2)ds+M(Γλ(t))2+Mt0Γλ(s)Gλ(s)ds+Mλ,
(1.17)

其中

~Γλ(0)=(ˉzλ,ˉvλ,ˉρλ,ˉzλt,ˉvλt,ˉρλt,ˉzλ,ˉvλ,ˉρλ,ˉzλt,ˉvλt,ˉρλt)2(t=0)+λ2(ˉEλ,λdivˉEλ,ˉEλt,λdivˉEλt,λdivˉEλ,λdivˉEλt)2(t=0).
(1.18)

另外, 为给出关于λ的一致先验估计, 通过引入两个λ -加权的Lyapunov型函数

Γλ(t)=(ˉzλ,ˉvλ,ˉEλ,ˉρλ,ˉzλt,ˉvλt,ˉρλt,ˉzλ,ˉvλ,divˉvλ,ˉρλ)2+(ˉzλt,ˉvλt,ˉρλt,ˉzλ,ˉvλ,divˉvλ)2+λ2(ˉEλ,λdivˉEλ,ˉEλt,λdivˉEλt,λdivˉEλ,λdivˉEλt,λdivˉEλ)2
(1.19)

Gλ(t)=(ˉρλ,ˉEλ,ˉEλt,ˉzλ,ˉvλ,divˉvλ,ˉρλ,ˉzλt,ˉvλt,divˉvλt,ˉρλt)2+(ˉzλ,ˉvλ,divˉvλ,ˉzλt,ˉvλt,divˉvλt)2+λ2(λdivˉEλ,λdivˉEλt,λdivˉEλ,λdivˉEλt,λdivˉEλ,λdivˉEλt)2,
(1.20)

其中ˉEλ, ˉvλˉρλ由(2.1)式定义. 并且ˉzλ=ˉnλ+ˉpλ. 另外,该文应用ϵ,M,M(ϵ)表示独立于λ的正常数, 可能行于行之间不同.

2 误差方程和定理

ˉnλ=nλn,ˉpλ=pλp,ˉEλ=Eλε,ˉvλ=vλv,ˉρλ=ρλρ,
(2.1)

把(2.1)式代入系统(1.1)-(1.3),(1.5),(1.9)式. 并应用方程(1.10)-(1.14), 可得

ˉnλt=div(μn(ˉnλ+nˉEλ)+ˉnλ(ˉEλ+ε)ˉnλ(ˉvλ+v)nˉvλ),
(2.2)
ˉpλt=div(μp(ˉpλpˉEλ)ˉpλ(ˉEλ+ε)ˉpλ(ˉvλ+v)pˉvλ),
(2.3)
λ2divˉEλ=ˉnλˉpλ+λ2divε,
(2.4)
(ˉρλ+ρ)ˉvλt+ˉρvt+2A(ˉρλ+ρ)ˉρλ+2Aˉρλρ+(ˉρλ+ρ)(ˉvλ+v)ˉvλ+(ˉρλ+ρ)ˉvλv+ˉρλvv=μΔv+divˉvλ+λ2(divˉEλ+divε)(ˉEλ+ε)DˉEλ,
(2.5)
ˉρλt+div((ρ+ˉρλ)ˉvλ+ρλv)=0,
(2.6)

初始条件

(nλ,pλ,vλ,ρλ)(x,0)=(nλ0(x),pλ0(x),vλ0(x),ρλ0(x)).
(2.7)

引入密度变换

ˉzλ=ˉnλ+ˉpλ,  ˉnλ=ˉzλλ2(divˉEλ+divε)2,  ˉpλ=ˉzλ+λ2(divˉEλ+divε)2,
(2.8)

应用公式

μnc±μpd=μn±μp2(c+d)+μnμp2(cd),
(2.9)

为简化系统的写法, 引入记号

A=ˉzλ+DˉEλλ2εdivˉEλλ2(ˉEλ+ε)divε,
(2.10)
B=λ2(divˉEλ+divε)+zˉEλ+εˉzλ,
(2.11)

那么系统(2.2)-(2.7)可以等价的简化为

ˉzλt=μn+μp2divA+μnμp2divBdiv(ˉzλv+zˉvλ)μn+μp2λ2div(ˉEλdivˉEλ)+μnμp2div(ˉzλˉEλ)div(ˉzλvλ),
(2.12)
λ2divEλt=μn+μp2divB+μnμp2divA+λ2div(v(divˉEλ+divε))+λ2div((ˉvλ+v)divε))div(Dˉvλ)μnμp2λ2div(ˉEλdivˉEλ)+μn+μp2div(ˉzλˉEλ)+λ2div(ˉvλdivˉEλ),
(2.13)
ˉρλˉvλt+2Aˉρλˉρλ=ρˉvλt2Aρˉρλ2Aˉρλρˉρλvtˉρλvvρˉvλvρvˉvλ+λ2ˉEλdivε+λ2εdivˉEλ+λ2ελdivεDˉEλ+μΔˉvλ+divˉvλρˉvλˉvλˉρλvˉvλˉρλˉvλv+λ2ˉEλdivˉEλˉρλˉvλˉvλ,
(2.14)
ˉρλt+div(ˉρλˉvλ)+div(ρˉvλ+vˉρλ)=0,
(2.15)

初始条件

(zλ,vλ,ρλ)(x,0)=(zλ0(x),vλ0(x),ρλ0(x)).
(2.16)

形式上当λ0时, 有(ˉzλ,ˉρλ,ˉEλ,ˉvλ)(z,ρ,ε,v), 因此有极限系统

zt=μn+μp2div(z+Dε)+μnμp2div(3zε)div(3zv),
(2.17)
0=μn+μp2div(3zε)+μnμp2div(z+Dε)div(Dv),
(2.18)
ρvt+ρvv+A(ρ2)μv=divv(np)ε,
(2.19)
ρt+div(ρv)=0,
(2.20)

初始条件

(n,p,ρ,v)(x,0)=(n0,p0,ρ0,v0)(x).
(2.21)

易证系统(1.1)-(1.6)和系统(2.12)-(2.16), 以及极限系统(1.10)-(1.15)和(2.17)-(2.21)式的等价性,此处省略证明过程.

下面给出该文的主要结论.

定理2.1 假设函数(nλ,pλ,Eλ,vλ,ρλ)是系统(1.1)-(1.6)的局部解, 它们定义在 T2×[0,T)上, 其中T:0<T<是极限系统(1.10)-(1.15)的局部光滑解(n,p,ε,v,ρ) 的最大时间存在区间, 并且n+p>k0,0<ρ_<ρ<¯ρ, 其中k0,ρ_<ρ<¯ρ是正常数, 同时假设存在正常数M1使得

3i=0it(ˉzλ,λˉEλ,λ2divˉEλ,ˉvλ,ˉρλ)2(t=0)M1λ
(2.22)

3i=0it(ˉzλ,λdivˉEλ,λ2divˉEλ,ˉvλ,ˉρλ)2(t=0)M1λ
(2.23)

成立. 那么系统(2.12)-(2.16)存在唯一光滑解 (ˉzλ,ˉpλ,ˉEλ,ˉvλ,ˉρλ) 满足对任意的T(0,T) 有正常数M,δ<1λ01, 使得对任意的 λ(0,λ0]

sup0tT((ˉzλ,ˉvλ,λˉEλt)2H2+(ˉρλ,ˉzλt,ˉvλt,ˉρλt)2H1+ˉEλ2H3)Mλ1δ.
(2.24)

成立.

3 能量估计

下面应用能量估计证明定理2.1.

为了简化符号, 引入\lambda -加权Sobolev模如下

\begin{equation} \mid\mid\mid W\mid\mid\mid^2=\parallel(\bar{z}^\lambda,\bar{v}^\lambda,\lambda\bar{E}_t^\lambda)\parallel^2_{H^2}+\parallel (\bar{\rho}^\lambda,\bar{z}_t^\lambda,\bar{v}_t^\lambda,\bar{\rho}_t^\lambda) \parallel^2_{H^1}+\parallel\bar{E}^\lambda\parallel^2_{H^3}.~~~~\label{eq:tg3} \end{equation}
(3.1)

定理3.1 在定理 2.1的假设下, 有

\begin{matrix} &&\parallel(\bar{z}^\lambda,\lambda \bar{E}^\lambda,\lambda^2{\rm div}\bar{E}^\lambda,\bar{v}^\lambda,\bar{\rho}^\lambda)\parallel^2\nonumber\\ &&+M \int_0^t\parallel (\nabla \bar{z}^\lambda, \bar{E}^\lambda,\lambda {\rm div}\bar{E}^\lambda, \lambda^2\nabla {\rm div}\bar{E}^\lambda,\nabla \bar{v}^\lambda,{\rm div}\bar{v}^\lambda,\bar{\rho}^\lambda) \parallel^2{\rm d}t\nonumber\\ &\leq&\parallel(\bar{z}^\lambda,\lambda \bar{E}^\lambda,\lambda^2{\rm div}\bar{E}^\lambda,\bar{v}^\lambda,\bar{\rho}^\lambda)\parallel^2(t=0)\nonumber\\ &&+M\int_0^t\parallel ( \bar{z}^\lambda,\bar{v}^\lambda,\bar{\rho}^\lambda) \parallel^2{\rm d}t+M\int_0^t \mid\mid\mid W\mid\mid\mid^4(s){\rm d}s+M\lambda.\label{eq:eq-zevest1} \end{matrix}
(3.2)

在系统(2.12)-(2.14)两端分别乘以\bar{z}^\lambda,-\bar{\phi}^\lambda,\bar{v}^\lambda, 另外再在方程(2.13)两端乘以\lambda^2 {\rm div}\bar{E}^\lambda, 再关于x {\Bbb T}^3上积分, 可得

\begin{matrix} &&\frac{\rm d}{{\rm d}t}\parallel(\bar{z}^\lambda,\lambda \bar{E}^\lambda,\lambda^2{\rm div}\bar{E}^\lambda,\bar{v}^\lambda,\bar{\rho}^\lambda)\parallel^2\nonumber \\ & &+k\parallel(\nabla \bar{z}^\lambda, \bar{E}^\lambda,\lambda {\rm div}\bar{E}^\lambda, \lambda^2\nabla {\rm div}\bar{E}^\lambda,\nabla \bar{v}^\lambda,{\rm div}\bar{v}^\lambda,\bar{\rho}^\lambda)\parallel^2\nonumber\\ & \leq & M\parallel(\bar{z}^\lambda,\bar{v}^\lambda,\bar{\rho}^\lambda)\parallel^2+M\mid\mid\mid W\mid\mid\mid^4+M\lambda, \label{eq:eq-zxy1} \end{matrix}
(3.3)

对不等式(3.3)关于t[t]上积分,可以得到不等式(3.2). 证毕

注3.1 定理3.1与定理3.2的证明类似, 此处省略该定理的证明.

定理3.2 在定理 2.1的假设下, 有

\begin{matrix} &&\parallel(\bar{z}_t^\lambda,\lambda \bar{E}_t^\lambda,\lambda^2{\rm div}\bar{E}_t^\lambda,\bar{v}_t^\lambda,\bar{\rho}_t^\lambda)\parallel^2\nonumber \\ &&+M \int_0^t\parallel (\nabla \bar{z}_t^\lambda, \bar{E}_t^\lambda,\lambda {\rm div}\bar{E}_t^\lambda, \lambda^2\nabla {\rm div}\bar{E}_t^\lambda,\nabla \bar{v}_t^\lambda,{\rm div}\bar{v}_t^\lambda) \parallel^2{\rm d}t\nonumber \\ &\leq&\parallel(\bar{z}_t^\lambda,\lambda \bar{E}_t^\lambda,\lambda^2{\rm div}\bar{E}_t^\lambda,\bar{v}_t^\lambda,\bar{\rho}_t^\lambda)\parallel^2(t=0)\nonumber \\ &&+M\int_0^t\parallel ( \bar{z}^\lambda,\bar{z}_t^\lambda,\bar{v}^\lambda,\nabla\bar{v}^\lambda,{\rm div}\bar{v}^\lambda,\bar{v}_t^\lambda,\bar{\rho}^\lambda,\nabla\bar{\rho}^\lambda,\bar{\rho}_t^\lambda,\bar{E}^\lambda,{\rm div}\bar{E}^\lambda) \parallel^2{\rm d}t\nonumber \\ &&+M\int_0^t (\mid\mid\mid W\mid\mid\mid^4(s)+\mid\mid\mid W\mid\mid\mid^2G^\lambda(t)){\rm d}s+M\lambda.\label{eq:eq-zevest2} \end{matrix}
(3.4)

对方程(2.12)关于t求导, 在方程两端乘以\bar{z}^\lambda_t, 然后关于x在区间{\Bbb T}^3上积分, 应用Green公式, 有

\begin{matrix} &&\frac{1}{2}\frac{\rm d}{{\rm d}t}\parallel \bar{z}_t^\lambda \parallel^2+\frac{\mu_n+\mu_p}{2}\parallel \nabla \bar{z}_t^\lambda\parallel^2\nonumber \\ &=&-\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3} (A-\nabla \bar{z}^\lambda)_t\nabla \bar{z}_t^\lambda {\rm d}x-\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3} B_t\nabla \bar{z}^\lambda_{t}{\rm d}x+\int_{{\Bbb T}^3} (z\bar{v}^\lambda+\bar{z}^\lambda v)_t\nabla \bar{z}^\lambda_t{\rm d}x\nonumber \\ &&-\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3}(\bar{z}^\lambda \bar{E}^\lambda)_t\nabla \bar{z}^\lambda_t{\rm d}x+\lambda^2\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3}(\bar{E}^\lambda{\rm div}\bar{E}^\lambda)_t\nabla \bar{z}^\lambda_t{\rm d}x+\int_{{\Bbb T}^3}(\bar{z}^\lambda \bar{v}^\lambda)_t\nabla \bar{z}^\lambda_t {\rm d}x. \label{eq:eq-zest8} \end{matrix}
(3.5)

估计方程(3.5)右端各项. 对于线性项, 应用Cauchy-Schwarz 不等式, Sobolev嵌入定理, 线性项可以被(3.6)式控制

\begin{matrix} && \epsilon\frac{\mu_n+\mu_p}{2}\parallel\nabla \bar{z}^\lambda_{t}\parallel^2+\epsilon\parallel (\bar{E}^\lambda,\bar{E}^\lambda_{t},{\rm div}\bar{E}^\lambda,\bar{z}^\lambda,\bar{z}^\lambda_{t},\bar{v}^\lambda,\bar{v}^\lambda_{t}) \parallel^2\nonumber\\ && +M(\epsilon)\lambda^4\parallel ({\rm div}\bar{E}^\lambda_{t},\nabla{\rm div}\bar{E}^\lambda_{t}) \parallel^2+M\lambda.\label{eq:eq-zest9} \end{matrix}
(3.6)

对于非线性项, 有

\begin{matrix} &&\int_{{\Bbb T}^3} ({\bar{z}^\lambda \bar{v}^\lambda})_t\nabla \bar{z}^\lambda_{t} {\rm d}x\nonumber \\ & \leq & M(\epsilon)\parallel \bar{v}^\lambda_{t}\bar{z}^\lambda \parallel^2+M(\epsilon)\parallel \bar{v}^\lambda\bar{z}_t^\lambda \parallel^2+\epsilon\parallel \nabla \bar{z}^\lambda_{t} \parallel^2\nonumber \\ & \leq & M(\epsilon) \parallel \bar{v}^\lambda_{t} \parallel^2\parallel \bar{z}^\lambda\parallel_{H^2}^2+M(\epsilon) \parallel \bar{z}^\lambda_{t} \parallel^2\parallel \bar{v}^\lambda\parallel_{H^2}^2+\epsilon\parallel \nabla \bar{z}^\lambda_{t} \parallel^2\nonumber \\ &\leq& \epsilon\parallel \nabla \bar{z}^\lambda_{t} \parallel^2+M\mid\mid\mid W\mid\mid\mid^4,\label{eq:eq-zest10} \end{matrix}
(3.7)
\begin{matrix} &&-\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3} ({\bar{z}^\lambda\bar{E}^\lambda})_t\nabla \bar{z}^\lambda_t {\rm d}x\nonumber \\ &=&-\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3} ({\bar{z}^\lambda_t\bar{E}^\lambda+\bar{z}^\lambda\bar{E}_t^\lambda})\nabla \bar{z}^\lambda_t {\rm d}x\nonumber \\ &\leq & M(\epsilon)(\parallel\bar{E}^\lambda_{t}\bar{z}^\lambda\parallel^2+\parallel \bar{E}^\lambda\bar{z}^\lambda_{t} \parallel^2)+\epsilon\frac{\mu_n-\mu_p}{2}\parallel \nabla \bar{z}^\lambda_{t} \parallel^2\nonumber\\ & \leq& M(\epsilon)( \parallel \bar{z}^\lambda\parallel_{H^2}^2\parallel \bar{E}^\lambda_{t} \parallel^2+\parallel \bar{z}^\lambda_{t} \parallel_{H^1}^2\parallel \bar{E}^\lambda\parallel_{H^1}^2)+\epsilon\frac{\mu_n-\mu_p}{2}\parallel \nabla \bar{z}^\lambda_{t} \parallel^2\nonumber \\ &\leq&\epsilon\frac{\mu_n-\mu_p}{2}\parallel \nabla \bar{z}^\lambda_{t} \parallel^2+M\mid\mid\mid W\mid\mid\mid^4,\label{eq:eq-zest11} \end{matrix}
(3.8)
\begin{matrix} &&\lambda^2\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3} ({\bar{E}^\lambda{\rm div}\bar{E}^\lambda})_t\nabla \bar{z}^\lambda_{t} {\rm d}x\nonumber \\ &=&\lambda^2\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3}({\bar{E}^\lambda_{t}{\rm div}\bar{E}^\lambda}+{\bar{E}^\lambda{\rm div}\bar{E}^\lambda_{t}})\nabla \bar{z}^\lambda_{t} {\rm d}x \nonumber \\ & \leq &\lambda^4M(\epsilon)( \parallel \bar{E}^\lambda_{t}{\rm div}\bar{E}^\lambda \parallel^2+\parallel \bar{E}^\lambda{\rm div}\bar{E}^\lambda_{t} \parallel^2)+\epsilon\frac{\mu_n+\mu_p}{2}\parallel \nabla \bar{z}^\lambda_{t} \parallel^2\nonumber \\ & \leq &\lambda^4M(\epsilon)(\parallel \bar{E}^\lambda \parallel_{H^2}^2\parallel {\rm div}\bar{E}^\lambda_{t} \parallel^2+\parallel \bar{E}^\lambda_{t} \parallel_{H^1}^2\parallel {\rm div}\bar{E}^\lambda \parallel_{H^1}^2)+\epsilon\frac{\mu_n+\mu_p}{2}\parallel \nabla \bar{z}^\lambda_{t} \parallel^2\nonumber \\ &\leq&\epsilon\frac{\mu_n+\mu_p}{2}\parallel \nabla \bar{z}^\lambda_{t} \parallel^2+M\mid\mid\mid W\mid\mid\mid^4.\label{eq:eq-zest12} \end{matrix}
(3.9)

应用不等式(3.5)-(3.9), 可得

\begin{matrix} && \frac{\rm d}{{\rm d}t}\parallel \bar{z}^\lambda_{t} \parallel^2+k\parallel \nabla \bar{z}^\lambda_{t}\parallel^2\nonumber \\ & \leq &M\parallel(\bar{z}^\lambda,\bar{z}^\lambda_{t},\bar{E}^\lambda,\bar{E}^\lambda_{t},{\rm div}\bar{E}^\lambda,\bar{v}^\lambda,\bar{v}^\lambda_{t})\parallel^2 +M\lambda^4\parallel({\rm div}\bar{E}^\lambda_{t},\nabla {\rm div}\bar{E}^\lambda_{t})\parallel^2\nonumber \\ && +M\mid\mid\mid W\mid\mid\mid^4+M\lambda.\label{eq:eq-zest17} \end{matrix}
(3.10)

对方程(2.13)关于t求导, 两端乘以\bar{\phi}^\lambda_{t}, 再关于x在区间{\Bbb T}^3 积分, 可得

\begin{matrix} &&\frac{\lambda^2}{2}\frac{\rm d}{{\rm d}t}\parallel \bar{E}^\lambda_{t} \parallel^2+\lambda^2\parallel {\rm div} \bar{E}^\lambda_{t}\parallel^2+\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3} z |\bar{E}^\lambda_{t}|^2{\rm d}x\nonumber \\ & =&\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3}B_t\bar{E}^\lambda_{t}{\rm d}x+\frac{\mu_n+\mu_p}{2}\lambda^2\int_{{\Bbb T}^3} z |{\rm div}\bar{E}^\lambda_{t}|^2{\rm d}x-\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3} z_t\bar{E}^\lambda \bar{E}^\lambda_{t}{\rm d}x\nonumber \\ && -\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3}A_t\bar{E}^\lambda_{t}{\rm d}x+\lambda^2\int_{{\Bbb T}^3}(v({\rm div}\bar{E}^\lambda+{\rm div}\varepsilon))_t\bar{E}^\lambda_{t}{\rm d}x\nonumber \\ && -\lambda^2\int_{{\Bbb T}^3} ((\bar{v}^\lambda+v){\rm div}\varepsilon)_t \bar{E}^\lambda_{t}{\rm d}x +\int_{{\Bbb T}^3} D\bar{v}^\lambda_t \bar{E}^\lambda_{t}{\rm d}x-\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3} {(\bar{z}^\lambda\bar{E}^\lambda)_t}\bar{E}^\lambda_{t} {\rm d}x\nonumber \\ &&-\lambda^2\int_{{\Bbb T}^3} (\bar{v}^\lambda{\rm div}\bar{E}^\lambda)_t\bar{E}^\lambda_{t} {\rm d}x +\lambda^2\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3} {(\bar{E}^\lambda{\rm div}\bar{E}^\lambda)_t}\bar{E}^\lambda_{t} {\rm d}x. \label{eq:eq-eest7} \end{matrix}
(3.11)

估计(3.11)式右端各项. 对于线性项, 应用Cauchy-Schwarz不等式, Sobolev嵌入定理, \bar{E}^\lambda_{t}=-\nabla\bar{\phi}^\lambda_{t}, 线性项可以被(3.12)控制

\begin{equation} \epsilon\parallel (\bar{E}^\lambda,\bar{E}^\lambda_{t},\bar{z}^\lambda,\bar{z}^\lambda_{t},\bar{v}^\lambda,\bar{v}^\lambda_{t}) \parallel^2 +M(\epsilon)\lambda^4 \parallel ({\rm div}\bar{E}^\lambda,{\rm div}\bar{E}^\lambda_{t}) \parallel^2+M\lambda,\label{eq:eq-eest8} \end{equation}
(3.12)

对于非线性项, 应用Cauchy-Schwarz不等式和Sobolev嵌入不等式, 有

\begin{matrix} &&-\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3} {(\bar{z}^\lambda\bar{E}^\lambda)_t}\bar{E}^\lambda_{t} {\rm d}x\nonumber \\ &=&-\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3} {(\bar{z}^\lambda_{t}\bar{E}^\lambda+\bar{z}^\lambda\bar{E}^\lambda_{t})}\bar{E}^\lambda_{t} {\rm d}x\nonumber \\ & \leq & M(\epsilon)\parallel \bar{E}^\lambda_{t} \bar{z}^\lambda \parallel^2+ M(\epsilon)\parallel \bar{E}^\lambda \bar{z}^\lambda_{t} \parallel^2+\epsilon\parallel \bar{E}^\lambda_{t} \parallel^2\nonumber \\ & \leq &M(\epsilon)\parallel \bar{z}^\lambda \parallel_{H^2}^2 \parallel \bar{E}^\lambda_{t} \parallel^2+M(\epsilon)\parallel \bar{E}^\lambda \parallel_{H^1}^2 \parallel \bar{z}^\lambda_{t} \parallel_{H^1}^2+\epsilon\parallel \bar{E}^\lambda_{t} \parallel^2\nonumber \\ &\leq&\epsilon\parallel \bar{E}^\lambda_{t} \parallel^2+M\mid\mid\mid W\mid\mid\mid^4+M\mid\mid\mid W\mid\mid\mid^2G^\lambda(t),\label{eq:eq-eest9} \end{matrix}
(3.13)
\begin{matrix} && \lambda^2\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3}{(\bar{E}^\lambda{\rm div}\bar{E}^\lambda)_t}\bar{E}^\lambda_{t} {\rm d}x\nonumber \\ & =&\lambda^2\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3}{\bar{E}^\lambda_{t}{\rm div}\bar{E}^\lambda}\bar{E}^\lambda_{t} {\rm d}x+\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3} \lambda^2{\bar{E}^\lambda{\rm div}\bar{E}^\lambda_{t}}\bar{E}^\lambda_{t} {\rm d}x\nonumber \\ &\leq& M(\epsilon)\lambda^4\parallel \bar{E}^\lambda_{t} {\rm div}\bar{E}^\lambda\parallel^2+M(\epsilon)\lambda^4\parallel \bar{E}^\lambda {\rm div}\bar{E}^\lambda_{t}\parallel^2+\epsilon(\frac{\mu_n-\mu_p}{2})^2\parallel \bar{E}^\lambda_{t} \parallel^2\nonumber \\ & \leq& M\lambda^4\parallel \bar{E}^\lambda\parallel_{H^2}^2 \parallel {\rm div}\bar{E}^\lambda_{t}\parallel^2+M\lambda^4\parallel \bar{E}^\lambda_{t}\parallel_{H^1}^2 \parallel {\rm div}\bar{E}^\lambda\parallel_{H^1}^2+\epsilon(\frac{\mu_n-\mu_p}{2})^2\parallel \bar{E}^\lambda_{t} \parallel^2\nonumber \\ &\leq&\epsilon\parallel \bar{E}^\lambda_{t} \parallel^2+M\mid\mid\mid W\mid\mid\mid^4,\label{eq:eq-eest10} \end{matrix}
(3.14)
\begin{matrix} && -\lambda^2 \int_{{\Bbb T}^3}({\rm div}\bar{E}^\lambda \bar{v}^\lambda)_t\bar{E}^\lambda_{t} {\rm d}x\nonumber \\ & =&-\lambda^2 \int_{{\Bbb T}^3} {\rm div}\bar{E}^\lambda \bar{v}^\lambda_{t}\bar{E}^\lambda_{t} {\rm d}x-\lambda^2 \int_{{\Bbb T}^3} {\rm div}\bar{E}^\lambda_{t} \bar{v}^\lambda\bar{E}^\lambda_{t} {\rm d}x\nonumber \\ & \leq& M(\epsilon)\lambda^4\parallel \bar{v}^\lambda_{t} {\rm div}\bar{E}^\lambda\parallel^2+M(\epsilon)\lambda^4\parallel \bar{v}^\lambda {\rm div}\bar{E}^\lambda_{t}\parallel^2+\epsilon\parallel \bar{E}^\lambda_{t} \parallel^2\nonumber \\ & \leq& M\lambda^4\parallel \bar{v}^\lambda_{t}\parallel_{H^1}^2 \parallel {\rm div}\bar{E}^\lambda\parallel_{H^1}^2+M\lambda^4\parallel \bar{v}^\lambda\parallel_{H^2}^2 \parallel {\rm div}\bar{E}^\lambda_{t}\parallel^2+\epsilon\parallel \bar{E}^\lambda_{t} \parallel^2\nonumber\\ & \leq&\epsilon\parallel \bar{E}^\lambda_{t} \parallel^2+M\mid\mid\mid W\mid\mid\mid^4.\label{eq:eq-eest11} \end{matrix}
(3.15)

那么, 由不等式(3.11)-(3.15), 并限制\lambda足够小, 有

\begin{matrix} && \lambda^2 \frac{\rm d}{{\rm d}t}\parallel \bar{E}^\lambda_{t} \parallel^2+k\parallel (\bar{E}^\lambda_{t},\lambda {\rm div} \bar{E}^\lambda_{t})\parallel^2\nonumber \\ & \leq & M(\epsilon)\parallel(\bar{z}^\lambda,\bar{z}^\lambda_{t},\nabla \bar{z}^\lambda_{t},\bar{E}^\lambda,{\rm div}\bar{E}^\lambda,\bar{v}^\lambda,\bar{v}^\lambda_{t})\parallel^2+M\mid\mid\mid W\mid\mid\mid^4\nonumber \\ && +M\mid\mid\mid W\mid\mid\mid^2G^\lambda(t)+M\lambda.\label{eq:eq-eest13} \end{matrix}
(3.16)

对(2.13)式关于t求导, 两边乘以\lambda^2{\rm div}\bar{E}^\lambda_{t}, 关于x在区间{{\Bbb T}^3}上积分, 可得

\begin{matrix} &&\frac{\lambda^4}{2}\frac{\rm d}{{\rm d}t}\parallel {\rm div}\bar{E}^\lambda_{t} \parallel^2+\lambda^4\parallel \nabla{\rm div} \bar{E}^\lambda_{t}\parallel^2+\frac{\mu_n+\mu_p}{2}\lambda^2\int_{{\Bbb T}^3} z|{\rm div}\bar{E}^\lambda_{t}|^2{\rm d}x\nonumber \\ &=&\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3}B_t\nabla{\rm div}\bar{E}^\lambda_{t}{\rm d}x+\frac{\mu_n+\mu_p}{2}\lambda^2\int_{{\Bbb T}^3} z |{\rm div}\bar{E}^\lambda_{t}|^2{\rm d}x-\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3} z_t\bar{E}^\lambda\nabla{\rm div} \bar{E}^\lambda_{t}{\rm d}x\nonumber \\ &&-\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3}A_t\nabla{\rm div}\bar{E}^\lambda_{t}{\rm d}x+\lambda^2\int_{{\Bbb T}^3}(v({\rm div}\bar{E}^\lambda+{\rm div}\varepsilon))_t\nabla{\rm div}\bar{E}^\lambda_{t}{\rm d}x\nonumber \\ &&-\lambda^2\int_{{\Bbb T}^3} ((\bar{v}^\lambda+v){\rm div}\varepsilon)_t \nabla{\rm div}\bar{E}^\lambda_{t}{\rm d}x +\int_{{\Bbb T}^3} D\bar{v}^\lambda_t \nabla{\rm div}\bar{E}^\lambda_{t}{\rm d}x-\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3} {(\bar{z}^\lambda\bar{E}^\lambda)_t}\nabla{\rm div}\bar{E}^\lambda_{t} {\rm d}x\nonumber \\ &&-\lambda^2\int_{{\Bbb T}^3} (\bar{v}^\lambda{\rm div}\bar{E}^\lambda)_t\nabla{\rm div}\bar{E}^\lambda_{t} {\rm d}x +\lambda^2\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3} {(\bar{E}^\lambda{\rm div}\bar{E}^\lambda)_t}\nabla{\rm div}\bar{E}^\lambda_{t} {\rm d}x. \label{eq:eq-ee1} \end{matrix}
(3.17)

由于方程(3.17)与方程(3.11)完全类似, 因此, 同理可得

\begin{matrix} &&\lambda^4 \frac{\rm d}{{\rm d}t}\parallel {\rm div}\bar{E}^\lambda_{t} \parallel^2+k\lambda^2\parallel ({\rm div}\bar{E}^\lambda_{t},\lambda \nabla{\rm div} \bar{E}^\lambda_{t})\parallel^2\nonumber \\ &\leq & M(\epsilon)\parallel(\bar{z}^\lambda,\bar{z}^\lambda_{t},\nabla \bar{z}^\lambda_{t},\bar{E}^\lambda,\bar{v}^\lambda,\bar{v}^\lambda_{t})\parallel^2+M\lambda^2\parallel(\bar{E}^\lambda,\bar{E}^\lambda_{t},{\rm div}\bar{E}^\lambda)\parallel^2\nonumber \\ && +M\mid\mid\mid W\mid\mid\mid^4+M\mid\mid\mid W\mid\mid\mid^2G^\lambda(t)+M\lambda.\label{eq:eq-ee7} \end{matrix}
(3.18)

对方程(2.14)关于t求导, 乘以\bar{v}^\lambda_{t},在区间{{\Bbb T}^3}上关于x积分, 分部积分,有

\begin{matrix} &&\int_{{\Bbb T}^3}(\rho+\bar{\rho}^\lambda)\bar{v}^\lambda_{tt}\bar{v}^\lambda_t {\rm d}x+A\frac{\rm d}{{\rm d}t}\parallel\bar{\rho}^\lambda_t\parallel^2+\mu\parallel\nabla\bar{v}^\lambda_t\parallel^2+\parallel{\rm div}\bar{v}^\lambda_t\parallel^2\nonumber \\ & =&-\int_{{\Bbb T}^3}(\bar{\rho}^\lambda v_t+\bar{\rho}^\lambda v \nabla v+\rho\bar{v}^\lambda \nabla v+\rho v \nabla\bar{v}^\lambda+\rho_t\bar{v}^\lambda_t )_t\bar{v}^\lambda_t{\rm d}x\nonumber\\ && -\int_{{\Bbb T}^3}D\bar{E}^\lambda_t \bar{v}^\lambda_t {\rm d}x-\lambda^2\int_{{\Bbb T}^3}(\bar{E}^\lambda{\rm div}\varepsilon+\varepsilon{\rm div}\bar{E}^\lambda+\varepsilon{\rm div}\varepsilon)_t\bar{v}_t^\lambda {\rm d}x\nonumber \\ &&-2A\int_{{\Bbb T}^3}(\bar{\rho}^\lambda{\rm div}v+v \nabla\bar{\rho}^\lambda)_t\rho^\lambda_t{\rm d}x-2A\int_{{\Bbb T}^3}(\rho_t{\rm div}\bar{v}^\lambda+\bar{v}^\lambda \nabla\rho_t)\bar{\rho}^\lambda_t{\rm d}x\nonumber \\ && -2A\int_{{\Bbb T}^3}(\rho \bar{v}^\lambda \nabla\bar{v}^\lambda+\bar{\rho}^\lambda v \nabla\bar{v}^\lambda+\bar{\rho}^\lambda\bar{v}^\lambda\nabla\bar{v}^\lambda)_t \bar{v}_t^\lambda {\rm d}x\nonumber \\ &&-\int_{{\Bbb T}^3}((\bar{\rho}^\lambda\bar{v}^\lambda\nabla v)_t+\bar{\rho}_t^\lambda\bar{v}^\lambda_t+\lambda^2(\bar{E}^\lambda{\rm div}\bar{E}^\lambda)_t)\bar{v}^\lambda_t {\rm d}x\nonumber \\ && -2A\int_{{\Bbb T}^3}({\rm div}\bar{v}^\lambda\bar{\rho}^\lambda_t+\bar{v}^\lambda\nabla\bar{\rho}^\lambda_t)\bar{\rho}^\lambda_t{\rm d}x.\label{eq:eq-vest6} \end{matrix}
(3.19)

估计方程(3.19)右端各项. 线性项可以被(3.20)式控制

\begin{matrix} &&\epsilon\parallel(\bar{\rho}^\lambda,\bar{\rho}^\lambda_t,\nabla\bar{\rho}^\lambda,\bar{v}^\lambda,\nabla\bar{v}^\lambda,\bar{v}^\lambda_t,\nabla\bar{v}^\lambda_t,{\rm div}\bar{v}^\lambda,\bar{E}^\lambda,\bar{E}^\lambda_t)\parallel^2\nonumber \\ && +M(\epsilon)\lambda^4\parallel (\bar{E}^\lambda,\bar{E}^\lambda_t,{\rm div}\bar{E}^\lambda,{\rm div}\bar{E}^\lambda_t) \parallel^2+M\lambda.~~~~\label{eq:eq-vest7} \end{matrix}
(3.20)

对于非线性项, 应用Cauchy-Schwarz不等式, Sobolev嵌入不等式, 见文献[4], 有

\begin{matrix} &&-2A\int_{{\Bbb T}^3}(\rho_t{\rm div}\bar{v}^\lambda+\bar{v}^\lambda \nabla\rho_t)\bar{\rho}^\lambda_t{\rm d}x-2A\int_{{\Bbb T}^3}(\rho \bar{v}^\lambda \nabla\bar{v}^\lambda+\bar{\rho}^\lambda v \nabla\bar{v}^\lambda+\bar{\rho}^\lambda\bar{v}^\lambda\nabla\bar{v}^\lambda)_t \bar{v}_t^\lambda {\rm d}x\nonumber \\ &&-\int_{{\Bbb T}^3}((\bar{\rho}^\lambda\bar{v}^\lambda\nabla v)_t+\bar{\rho}_t^\lambda\bar{v}^\lambda_t+\lambda^2(\bar{E}^\lambda{\rm div}\bar{E}^\lambda)_t)\bar{v}^\lambda_t {\rm d}x-2A\int_{{\Bbb T}^3}({\rm div}\bar{v}^\lambda\bar{\rho}^\lambda_t+\bar{v}^\lambda\nabla\bar{\rho}^\lambda_t)\bar{\rho}^\lambda_t{\rm d}x\nonumber \\ &\leq& \epsilon \parallel(\bar{v}^\lambda_t,\nabla\bar{v}^\lambda_t,\bar{\rho}^\lambda_t)\parallel^2+M\parallel\bar{v}^\lambda\bar{v}^\lambda_t \parallel^2+M\parallel\bar{\rho}^\lambda\bar{v}^\lambda_t\parallel^2\nonumber \\ && +M\parallel\nabla\bar{v}^\lambda\bar{v}^\lambda_t\parallel^2+M\parallel\bar{\rho}^\lambda_t\nabla\bar{v}^\lambda\parallel^2+M\parallel\bar{v}^\lambda\bar{\rho}^\lambda_t\parallel^2+M\parallel\bar{\rho}^\lambda_t\bar{v}^\lambda_t\parallel^2\nonumber \\ && +\lambda^4M\parallel\bar{E}^\lambda_t{\rm div}\bar{E}^\lambda\parallel^2+M\lambda^4\parallel\bar{E}^\lambda{\rm div}\bar{E}^\lambda_t\parallel^2+M\parallel\bar{\rho}^\lambda_t{\rm div}\bar{v}^\lambda\parallel^2\nonumber\\ & \leq& \epsilon \parallel(\bar{v}^\lambda_t,\nabla\bar{v}^\lambda_t,\bar{\rho}^\lambda_t)\parallel^2+M\parallel\bar{v}^\lambda_t \parallel^2\parallel\bar{v}^\lambda\parallel^2_{H^2}+M\parallel\bar{v}^\lambda_t \parallel^2_{H^1}\parallel\bar{\rho}^\lambda\parallel^2_{H^1}\nonumber \\ && +M\parallel\bar{v}^\lambda_t \parallel^2_{H^1}\parallel\nabla\bar{v}^\lambda\parallel^2_{H^1}+M\parallel\bar{\rho}^\lambda_t \parallel^2_{H^1}\parallel\nabla\bar{v}^\lambda\parallel^2_{H^1}+M\parallel\bar{\rho}^\lambda_t \parallel^2\parallel\bar{v}^\lambda\parallel^2_{H^2}\nonumber \\ && +M\parallel\bar{v}^\lambda_t \parallel^2_{H^1}\parallel\bar{\rho}^\lambda_t\parallel^2_{H^1}+M\parallel\bar{\rho}^\lambda_t \parallel^2_{H^1}\parallel{\rm div}\bar{v}^\lambda\parallel^2_{H^1}\nonumber \\ && +M\lambda^4\parallel\bar{E}^\lambda_t \parallel^2_{H^1}\parallel{\rm div}\bar{E}^\lambda\parallel^2_{H^1}+M\lambda^4\parallel\bar{E}^\lambda \parallel^2_{H^2}\parallel{\rm div}\bar{E}^\lambda_t\parallel^2\nonumber\\ & \leq& \epsilon \parallel(\bar{v}^\lambda_t,\nabla\bar{v}^\lambda_t,\bar{\rho}^\lambda_t)\parallel^2+M\mid\mid\mid W\mid\mid\mid^4.\label{eq:eq-vest9} \end{matrix}
(3.21)

联合不等式(3.19)-(3.21), 并应用不等式(3.22),有

\begin{equation} \int_{{\Bbb T}^3}(\rho+\bar{\rho}^\lambda)\bar{v}^\lambda_{tt}\bar{v}^\lambda_t {\rm d}x\geq \frac{\underline{\rho}}{2}\int_{{\Bbb T}^3}\bar{v}^\lambda_{tt}\bar{v}^\lambda_t {\rm d}x=\frac{\underline{\rho}}{4}\frac{\rm d}{{\rm d}t}\parallel\bar{v}^\lambda_t\parallel^2,\label{eq:rvt1} \end{equation}
(3.22)

\rho\bar{\rho}^\lambda满足不等式

\begin{equation} \frac{\underline{\rho}}{2}\leq \rho-|\bar{\rho}^\lambda|_{L^\infty}\leq\rho+\bar{\rho}^\lambda\leq\overline{\rho}+|\bar{\rho}^\lambda|_{L^\infty}\leq2\overline{\rho},\label{eq:rvt2} \end{equation}
(3.23)

其中\underline{\rho}\overline{\rho} 分别是下确界和上确界, 因此可得

\begin{matrix} &&\epsilon\frac{\rm d}{{\rm d}t}\parallel(\bar{\rho}^\lambda_t,\bar{v}^\lambda_t) \parallel^2+k\parallel (\nabla\bar{v}^\lambda_t,{\rm div}\bar{v}^\lambda_t)\parallel^2 \nonumber \\ & \leq & M\parallel(\bar{v}^\lambda,\bar{v}^\lambda_t,\nabla\bar{v}^\lambda,{\rm div}\bar{v}^\lambda,\bar{\rho}^\lambda,\bar{\rho}^\lambda_t,\bar{E}^\lambda, \bar{E}^\lambda_t)\parallel^2\nonumber \\ && +M\lambda^4\parallel({\rm div}\bar{E}^\lambda,{\rm div} \bar{E}^\lambda_t)\parallel^2 +M\mid\mid\mid W\mid\mid\mid^4+M\lambda.\label{eq:eq-vest10} \end{matrix}
(3.24)

联合\delta_2(3.10),(3.15),(3.18)和(3.24)式, 在区间[t]上关于t 积分, 取\delta_2>0 足够小, 可得不等式(3.4). 证毕

定理3.3 估计\parallel(\nabla \bar{z}^\lambda, \bar{E}^\lambda,\lambda {\rm div}\bar{E}^\lambda, \lambda^2\nabla {\rm div}\bar{E}^\lambda,\nabla \bar{v}^\lambda,{\rm div}\bar{v}^\lambda,\bar{\rho}^\lambda)\parallel^2,有

\begin{matrix} &&k\parallel(\nabla \bar{z}^\lambda, \bar{E}^\lambda,\lambda {\rm div}\bar{E}^\lambda, \lambda^2\nabla {\rm div}\bar{E}^\lambda,\nabla \bar{v}^\lambda,{\rm div}\bar{v}^\lambda,\bar{\rho}^\lambda)\parallel^2\nonumber \\ & \leq& M\parallel(\bar{z}^\lambda,\bar{z}^\lambda_t,\bar{v}^\lambda,\bar{v}^\lambda_t,\bar{\rho}^\lambda,,\bar{\rho}^\lambda_t)\parallel^2+M\lambda^2\parallel(\bar{E}^\lambda,\bar{E}^\lambda_t,\lambda{\rm div}\bar{E}^\lambda,\lambda{\rm div}\bar{E}^\lambda_t)\parallel^2\nonumber \\ && +M\mid\mid\mid W\mid\mid\mid^4+M\lambda,\label{eq:lw1} \end{matrix}
(3.25)

注3.2 不等式(3.25)可由不等式(3.3)和Green公式得到, 此处省略其证明.

定理3.4 在定理 2.1的假设下, 有

\begin{matrix} &&\parallel(\nabla\bar{z}^\lambda,\lambda \bar{\rm div}{E}^\lambda,\lambda^2\nabla{\rm div}\bar{E}^\lambda,\bar\nabla{v}^\lambda,\bar\nabla{\rho}^\lambda)\parallel^2\nonumber \\ && +M \int_0^t\parallel (\triangle \bar{z}^\lambda, {\rm div}\bar{E}^\lambda,\lambda\nabla {\rm div}\bar{E}^\lambda, \lambda^2\triangle {\rm div}\bar{E}^\lambda,\triangle \bar{v}^\lambda,\nabla{\rm div}\bar{v}^\lambda,\nabla\bar{\rho}^\lambda) \parallel^2 dt\nonumber \\ & \leq&\parallel(\nabla\bar{z}^\lambda,\lambda \bar{\rm div}{E}^\lambda,\lambda^2\nabla{\rm div}\bar{E}^\lambda,\bar\nabla{v}^\lambda,\bar\nabla{\rho}^\lambda)\parallel^2(t=0)\nonumber \\ && +M\int_0^t\parallel ( \nabla\bar{z}^\lambda,\nabla\bar{v}^\lambda,\nabla\bar{\rho}^\lambda) \parallel^2{\rm d}t+M\int_0^t \mid\mid\mid W\mid\mid\mid^4(s){\rm d}s+M\lambda.\label{eq:eq-zevest3} \end{matrix}
(3.26)

在方程(2.12)-(2.14)两边分别乘以-\triangle\bar{z}^\lambda,-\triangle\bar{\phi}^\lambda,-\triangle\bar{v}^\lambda, 再在方程(2.13)两边乘以\lambda^2 \triangle{\rm div}\bar{E}^\lambda, 应用|\mu_n-\mu_p|的小性, 在区间{\Bbb T}^3上关于x 积分, 分部积分, 应用Green公式, 有

\begin{matrix} &&\frac{\rm d}{{\rm d}t}\parallel(\nabla\bar{z}^\lambda,\lambda \bar{\rm div}{E}^\lambda,\lambda^2\nabla{\rm div}\bar{E}^\lambda,\bar\nabla{v}^\lambda,\bar\nabla{\rho}^\lambda)\parallel^2\nonumber \\ && +k\parallel(\triangle \bar{z}^\lambda, {\rm div}\bar{E}^\lambda,\lambda\nabla {\rm div}\bar{E}^\lambda, \lambda^2\triangle {\rm div}\bar{E}^\lambda,\triangle \bar{v}^\lambda,\nabla{\rm div}\bar{v}^\lambda,\nabla\bar{\rho}^\lambda)\parallel^2\nonumber \\ & \leq& M\parallel(\nabla\bar{z}^\lambda,\nabla\bar{v}^\lambda,\nabla\bar{\rho}^\lambda)\parallel^2+M\mid\mid\mid W\mid\mid\mid^4+M\lambda\label{xyrv1} \end{matrix}
(3.27)

在区间[t]上关于t 积分, 可得不等式(3.26). 证毕

定理3.5 在定理 2.1的假设下, 有

\begin{matrix} && \parallel (\nabla\bar{z}^\lambda_t,\lambda{\rm div} \bar{E}^\lambda_t,\lambda^2\nabla{\rm div} \bar{E}^\lambda_t,\nabla \bar{v}^\lambda_t,\nabla\bar{\rho}^\lambda_t)\parallel^2\nonumber \\ &&+k\int_0^t\parallel (\Delta \bar{z}^\lambda_t,{\rm div}\bar{E}^\lambda_t,\lambda \nabla{\rm div}\bar{E}^\lambda_t,\lambda^2 \Delta{\rm div}\bar{E}^\lambda_t,\Delta \bar{v}^\lambda_t,\nabla{\rm div}\bar{v}^\lambda_t) \parallel^2{\rm d}t\nonumber \\ &\leq& \parallel (\nabla\bar{z}^\lambda_t,\lambda{\rm div} \bar{E}^\lambda_t,\lambda^2\nabla{\rm div} \bar{E}^\lambda_t,\nabla \bar{v}^\lambda_t,\nabla\bar{\rho}^\lambda_t)\parallel^2(t=0)\nonumber \\ && +M\int_0^t\parallel(\bar{E}^\lambda,\bar{E}^\lambda_{t}, {\rm div}\bar{E}^\lambda,\lambda\nabla{\rm div}\bar{E}^\lambda,\bar{v}^\lambda,\nabla \bar{v}^\lambda,\bar{v}^\lambda_{t},\nabla \bar{v}^\lambda_{t},{\rm div}\bar{v}^\lambda,\nabla{\rm div}\bar{v}^\lambda)\parallel^2{\rm d}t\nonumber \\ && +M\int_{T^3}(\bar{z}^\lambda,\bar{z}^\lambda_{t},\nabla \bar{z}^\lambda,\nabla \bar{z}^\lambda_{t},\bar{\rho}^\lambda,\bar{\rho}^\lambda_t,\nabla\bar{\rho}^\lambda,\nabla\bar{\rho}^\lambda_t,\triangle\bar{\rho}^\lambda){\rm d}x\nonumber \\ && +M\int _0^t(\mid\mid\mid W\mid\mid\mid^4+\mid\mid\mid W\mid\mid\mid^2G^\lambda(s)){\rm d}s+M\lambda. \label{eq:eq-zevest4} \end{matrix}
(3.28)

对方程(2.12)关于t求导, 乘以-\Delta \bar{z}^\lambda_{t}, 在区间{{\Bbb T}^3} 上关于x积分, 应用Green 公式, 有

\begin{matrix} &&\frac{1}{2}\frac{\rm d}{{\rm d}t}\parallel \nabla\bar{z}_t^\lambda \parallel^2+\frac{\mu_n+\mu_p}{2}\parallel \triangle \bar{z}_t^\lambda\parallel^2\nonumber\\ &=&-\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3} (A-\nabla \bar{z}^\lambda)_t\triangle \bar{z}_t^\lambda {\rm d}x-\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3} B_t\triangle \bar{z}^\lambda_{t}{\rm d}x\nonumber \\ &&+\int_{{\Bbb T}^3} (z\bar{v}^\lambda+\bar{z}^\lambda v)_t\triangle \bar{z}^\lambda_t{\rm d}x-\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3}(\bar{z}^\lambda \bar{E}^\lambda)_t\triangle \bar{z}^\lambda_t{\rm d}x\nonumber \\ &&+\lambda^2\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3}(\bar{E}^\lambda{\rm div}\bar{E}^\lambda)_t\triangle \bar{z}^\lambda_t{\rm d}x+\int_{{\Bbb T}^3}(\bar{z}^\lambda \bar{v}^\lambda)_t\triangle \bar{z}^\lambda_t {\rm d}x. \label{eq:eq-zest25} \end{matrix}
(3.29)

估计方程(3.29)右端各项. 对于线性项, 应用Cauchy-Schwarz不等式, Sobolev嵌入定理, 见文献[4], 线性项可由(3.30)式控制

\begin{matrix} &&\epsilon\parallel( \bar{E}^\lambda,{\rm div}\bar{E}^\lambda,\nabla{\rm div}\bar{E}^\lambda,\bar{E}^\lambda_{t},{\rm div}\bar{E}^\lambda_{t},\bar{z}^\lambda,\nabla \bar{z}^\lambda,\nabla \bar{z}^\lambda_{t},\bar{z}^\lambda_{t},\bar{v}^\lambda,\bar{v}^\lambda_{t},{\rm div}\bar{v}^\lambda,\nabla\bar{v}^\lambda_t) \parallel^2\nonumber \\ && +\epsilon\frac{\mu_n+\mu_p}{2}\parallel\Delta \bar{z}^\lambda_{t}\parallel^2+ M(\epsilon)\lambda^4\parallel (\nabla{\rm div}\bar{E}^\lambda_{t},\Delta{\rm div}\bar{E}^\lambda_{t}) \parallel^2+M\lambda.\label{eq:eq-zest26} \end{matrix}
(3.30)

对于非线性项,有

\begin{matrix} && \int_{{\Bbb T}^3} {\rm div}{(\bar{z}^\lambda\bar{v}^\lambda)_t}\Delta \bar{z}^\lambda_{t} {\rm d}x\nonumber \\ &=&\int_{{\Bbb T}^3} \nabla \bar{z}^\lambda\bar{v}^\lambda_{t}\Delta \bar{z}^\lambda_{t} {\rm d}x+\int_{{\Bbb T}^3} \nabla \bar{z}^\lambda_{t}\bar{v}^\lambda\Delta \bar{z}^\lambda_{t} {\rm d}x+\int_{{\Bbb T}^3} \bar{z}^\lambda_{t}{\rm div}\bar{v}^\lambda\Delta \bar{z}^\lambda_{t} {\rm d}x+\int_{{\Bbb T}^3} \bar{z}^\lambda{\rm div}\bar{v}^\lambda_{t}\Delta \bar{z}^\lambda_{t} {\rm d}x\nonumber\\ &\leq &M(\epsilon)\parallel \nabla \bar{z}^\lambda\bar{v}^\lambda_{t} \parallel^2+ M(\epsilon)\parallel \nabla \bar{z}^\lambda_{t}\bar{v}^\lambda \parallel^2+ M(\epsilon)\parallel \bar{z}^\lambda_{t}{\rm div}\bar{v}^\lambda \parallel^2\nonumber \\ && + M(\epsilon)\parallel \bar{z}^\lambda{\rm div}\bar{v}^\lambda_{t} \parallel^2+\epsilon\parallel \Delta \bar{z}^\lambda_{t} \parallel^2\nonumber\\ &\leq & M(\epsilon)M_s\parallel \nabla \bar{z}^\lambda\parallel_{H^1}^2 \parallel \bar{v}^\lambda_{t} \parallel_{H^1}^2+M(\epsilon)M_s\parallel \nabla \bar{z}^\lambda_{t}\parallel^2 \parallel \bar{v}^\lambda \parallel_{H^2}^2\nonumber \\ && +M(\epsilon)M_s\parallel \bar{z}^\lambda_{t}\parallel^2_{H^2} \parallel {\rm div}\bar{v}^\lambda \parallel_{H^1}^2+M(\epsilon)M_s\parallel \bar{z}^\lambda\parallel^2_{H^2} \parallel{\rm div} \bar{v}^\lambda_t \parallel^2 +\epsilon\parallel \Delta \bar{v}^\lambda_{t} \parallel^2\nonumber \\ &\leq&\epsilon\parallel \Delta \bar{z}^\lambda_{t} \parallel^2+M\mid\mid\mid W\mid\mid\mid^4,\label{eq:eq-zest27} \end{matrix}
(3.31)
\begin{matrix} &&-\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3} {\rm div}{(\bar{z}^\lambda\bar{E}^\lambda)_t}\Delta \bar{z}^\lambda_{t} {\rm d}x\nonumber\\ & =&-\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3} ({\nabla \bar{z}^\lambda_{t}\bar{E}^\lambda+\bar{z}^\lambda_{t}{\rm div} \bar{E}^\lambda+\nabla \bar{z}^\lambda\bar{E}^\lambda_{t}+\bar{z}^\lambda{\rm div}\bar{E}^\lambda_{t}})\Delta \bar{E}^\lambda_{t} {\rm d}x\nonumber\\ &\leq & M(\epsilon)(\parallel \nabla \bar{z}^\lambda_{t}\bar{E}^\lambda \parallel^2+\parallel \bar{z}^\lambda_{t}{\rm div} \bar{E}^\lambda \parallel^2)\nonumber \\ && +M(\epsilon)(\parallel \nabla \bar{z}^\lambda\bar{E}^\lambda_{t} \parallel^2+\parallel \bar{z}^\lambda{\rm div}\bar{E}^\lambda_{t} \parallel^2)+\epsilon\frac{\mu_n-\mu_p}{2}\parallel \Delta \bar{z}^\lambda_{t} \parallel^2\nonumber \\ & \leq& M(\epsilon)\parallel \nabla \bar{z}^\lambda_{t}\parallel^2 \parallel \bar{E}^\lambda \parallel_{H^2}^2+M(\epsilon)\parallel \bar{z}^\lambda_{t}\parallel_{H^1}^2 \parallel{\rm div} \bar{E}^\lambda \parallel_{H^1}^2\nonumber\\ && +M(\epsilon)\parallel \nabla \bar{z}^\lambda\parallel_{H^1}^2 \parallel \bar{E}^\lambda_{t} \parallel_{H^1}^2 +M(\epsilon)\parallel \bar{z}^\lambda\parallel_{H^2}^2\parallel{\rm div}\bar{E}^\lambda_{t} \parallel^2+\epsilon\frac{\mu_n-\mu_p}{2}\parallel \Delta \bar{z}^\lambda_{t} \parallel^2\nonumber \\ & \leq&\epsilon\frac{\mu_n-\mu_p}{2}\parallel \Delta \bar{z}^\lambda_{t} \parallel^2+M\mid\mid\mid W\mid\mid\mid^4+M\mid\mid\mid W\mid\mid\mid^2G^\lambda(t),\label{eq:eq-zest28} \end{matrix}
(3.32)
\begin{matrix} && \lambda^2\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3}{\rm div}{(\bar{E}^\lambda{\rm div}\bar{E}^\lambda)}_t\Delta \bar{z}^\lambda_{t}{\rm d}x \nonumber \\ & =&\lambda^2\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3}({\rm div}{\bar{E}^\lambda_{t}{\rm div}\bar{E}^\lambda}+{\bar{E}^\lambda_{t}\nabla{\rm div}\bar{E}^\lambda}+{{\rm div}\bar{E}^\lambda{\rm div}\bar{E}^\lambda_{t}}+{\bar{E}^\lambda\nabla{\rm div}\bar{E}^\lambda_{t}}) \Delta \bar{z}^\lambda_{t} {\rm d}x \nonumber \\ &\leq& \lambda^4M(\epsilon)( \parallel {\rm div}{\bar{E}^\lambda_{t}{\rm div}\bar{E}^\lambda}\parallel^2+\parallel{\bar{E}^\lambda_{t}\nabla{\rm div}\bar{E}^\lambda}\parallel^2)\nonumber \\ &&+\lambda^4M(\epsilon)(\parallel{{\rm div}\bar{E}^\lambda{\rm div}\bar{E}^\lambda_{t}}\parallel^2+\parallel{\bar{E}^\lambda\nabla{\rm div}\bar{E}^\lambda_{t}} \parallel^2)+\epsilon\frac{\mu_n+\mu_p}{2}\parallel \Delta \bar{z}^\lambda_{t} \parallel^2\nonumber \\ &\leq& \lambda^4M(\epsilon)( \parallel {\rm div}{\bar{E}^\lambda_{t}\parallel_{H^1}^2\parallel{\rm div}\bar{E}^\lambda}\parallel_{H^1}^2+\parallel{\bar{E}^\lambda_{t}\parallel_{H^1}^2\parallel\nabla{\rm div}\bar{E}^\lambda}\parallel_{H^1}^2)\nonumber \\ && +\lambda^4M(\epsilon)(\parallel{{\rm div}\bar{E}^\lambda\parallel_{H^1}^2\parallel{\rm div}\bar{E}^\lambda_{t}}\parallel_{H^1}^2+\parallel{\bar{E}^\lambda\parallel_{H^2}^2\parallel\nabla{\rm div}\bar{E}^\lambda_{t}} \parallel^2)+\epsilon\frac{\mu_n+\mu_p}{2}\parallel \Delta \bar{z}^\lambda_{t} \parallel^2\nonumber \\ & \leq&\epsilon\frac{\mu_n+\mu_p}{2}\parallel \Delta \bar{z}^\lambda_{t} \parallel^2+M\mid\mid\mid W\mid\mid\mid^4+M\mid\mid\mid W\mid\mid\mid^2G^\lambda(t)+M\lambda^2\parallel \bar{E}^\lambda_{t}\parallel^2_{H^2}\mid\mid\mid W\mid\mid\mid^2.~~~~~~~\label{eq:eq-zest29} \end{matrix}
(3.33)

联合不等式(3.29)-(3.33), 有

\begin{matrix} &&\frac{\rm d}{{\rm d}t}\parallel\nabla \bar{z}^\lambda_{t} \parallel^2+k\parallel \Delta \bar{z}^\lambda_{t}\parallel^2\nonumber \\ &\leq& M\parallel(\bar{z}^\lambda,\bar{z}^\lambda_{t},\nabla \bar{z}^\lambda,\nabla \bar{z}^\lambda_{t},\bar{E}^\lambda,\bar{E}^\lambda_{t},{\rm div}\bar{E}^\lambda,{\rm div}\bar{E}^\lambda_{t},\nabla{\rm div}\bar{E}^\lambda,\bar{v}^\lambda,\bar{v}^\lambda_{t},{\rm div}\bar{v}^\lambda,\nabla\bar{v}^\lambda_{t})\parallel^2\nonumber \\ && +M\lambda^4\parallel(\nabla {\rm div}\bar{E}^\lambda_{t},\Delta{\rm div}\bar{E}^\lambda_{t})\parallel^2+M\mid\mid\mid W\mid\mid\mid^4+M\lambda^2\parallel E_{R,t}\parallel^2_{H^2}\mid\mid\mid W\mid\mid\mid^2\nonumber \\ &&+M\mid\mid\mid W\mid\mid\mid^2G^\lambda(t)+M\lambda.\label{eq:eq-zest32} \end{matrix}
(3.34)

对方程(2.13)两端关于t求导, 乘以-\Delta\bar{\phi}^\lambda_{t}={\rm div}\bar{E}^\lambda_{t}, 在区间{{\Bbb T}^3} 上关于x 积分, 有

\begin{matrix} &&\frac{\lambda^2}{2}\frac{\rm d}{{\rm d}t}\parallel {\rm div}\bar{E}^\lambda_{t} \parallel^2+\lambda^2\parallel \nabla{\rm div} \bar{E}^\lambda_{t}\parallel^2+\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3} z|{\rm div}\bar{E}^\lambda_{t}|^2{\rm d}x\nonumber \\ &=&\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3}B_t\nabla{\rm div}\bar{E}^\lambda_{t}{\rm d}x+\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3} z |{\rm div}\bar{E}^\lambda_{t}|^2{\rm d}x-\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3} z_t\bar{E}^\lambda\nabla{\rm div} \bar{E}^\lambda_{t}{\rm d}x\nonumber \\ &&-\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3}A_t\nabla{\rm div}\bar{E}^\lambda_{t}{\rm d}x+\int_{{\Bbb T}^3}(v({\rm div}\bar{E}^\lambda+{\rm div}\varepsilon))_t\nabla{\rm div}\bar{E}^\lambda_{t}{\rm d}x\nonumber\\ &&-\int_{{\Bbb T}^3} ((\bar{v}^\lambda+v){\rm div}\varepsilon)_t \nabla{\rm div}\bar{E}^\lambda_{t}{\rm d}x +\int_{{\Bbb T}^3} D\bar{v}^\lambda_t \nabla{\rm div}\bar{E}^\lambda_{t}{\rm d}x-\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3} {(\bar{z}^\lambda\bar{E}^\lambda)_t}\nabla{\rm div}\bar{E}^\lambda_{t} {\rm d}x\nonumber\\ && -\int_{{\Bbb T}^3} (\bar{v}^\lambda{\rm div}\bar{E}^\lambda)_t\nabla{\rm div}\bar{E}^\lambda_{t} {\rm d}x +\lambda^2\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3} {(\bar{E}^\lambda{\rm div}\bar{E}^\lambda)_t}\nabla{\rm div}\bar{E}^\lambda_{t} {\rm d}x.\label{eq:eq-eest20} \end{matrix}
(3.35)

估计方程(3.35)右端各项. 对线性项应用Cauchy-Schwarz不等式, Green公式以及Sobolev嵌入不等式, \bar{E}^\lambda_t=-\nabla\bar{\phi}^\lambda_t, 线性项可由(3.36)式控制

\begin{matrix} &&\epsilon\parallel(\bar{z}^\lambda, \bar{z}^\lambda_t,\nabla \bar{z}^\lambda,\nabla \bar{z}^\lambda_t, \bar{E}^\lambda,{\rm div}\bar{E}^\lambda,\bar{E}^\lambda_{t},{\rm div}\bar{E}^\lambda_{t},\bar{v}^\lambda,\bar{v}^\lambda_{t},{\rm div}\bar{v}^\lambda,\nabla\bar{v}^\lambda_{t}) \parallel^2\nonumber \\ &&+M(\epsilon)\lambda^4 \parallel (\nabla{\rm div}\bar{E}^\lambda,\nabla{\rm div}\bar{E}^\lambda_{t}) \parallel^2+M\lambda.\label{eq:eq-eest21} \end{matrix}
(3.36)

对非线性项, 应用Cauchy-Schwarz不等式和Green公式, 有

\begin{matrix} &&-\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3} {\rm div}{(\bar{z}^\lambda\bar{E}^\lambda)_t}{\rm div}\bar{E}^\lambda_{t} {\rm d}x\nonumber \\ & =&-\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3} {(\bar{z}^\lambda_{t}{\rm div}\bar{E}^\lambda+\nabla \bar{z}^\lambda\bar{E}^\lambda_{t}+\nabla \bar{z}^\lambda_{t}\bar{E}^\lambda+\bar{z}^\lambda{\rm div}\bar{E}^\lambda_{t})}{\rm div}\bar{E}^\lambda_{t} {\rm d}x\nonumber\\ & \leq& \epsilon\parallel {\rm div}\bar{E}^\lambda_{t} \parallel^2+M(\epsilon)(\|\bar{z}^\lambda_{t}{\rm div}\bar{E}^\lambda\|^2+\|\nabla \bar{z}^\lambda\bar{E}^\lambda_{t}\|^2+\|\nabla \bar{z}^\lambda_{t}\bar{E}^\lambda\|^2+\|\bar{z}^\lambda{\rm div}\bar{E}^\lambda_{t}\|^2)\nonumber \\ & \leq& \epsilon\parallel {\rm div}\bar{E}^\lambda_{t} \parallel^2+M(\epsilon)M_s\|\bar{z}^\lambda_{t}\|_{H^2}^2\|{\rm div}\bar{E}^\lambda\|^2+M(\epsilon)M_s\|\nabla \bar{z}^\lambda\|_{H^1}^2\|\bar{E}^\lambda_{t}\|_{H^1}^2\nonumber \\ &&+M(\epsilon)M_s\|\nabla \bar{z}^\lambda_{t}\|_{H^1}^2\|\bar{E}^\lambda\|_{H^1}^2+M(\epsilon)M_s\|\bar{z}^\lambda\|_{H^2}^2\|{\rm div}\bar{E}^\lambda_{t}\|^2\nonumber \\ &\leq &\epsilon\parallel {\rm div}\bar{E}^\lambda_{t} \parallel^2+M\mid\mid\mid W\mid\mid\mid^2G^\lambda(t)+M \mid\mid\mid W\mid\mid\mid^4,\label{eq:eq-eest22} \end{matrix}
(3.37)
\begin{matrix} && \lambda^2\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3}{{\rm div}(\bar{E}^\lambda{\rm div}\bar{E}^\lambda)_t}{\rm div}\bar{E}^\lambda_{t} {\rm d}x\nonumber \\ & =&\lambda^2\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3} (\nabla{\rm div}\bar{E}^\lambda \bar{E}^\lambda_{t}+\frac 32{\rm div}\bar{E}^\lambda{\rm div}\bar{E}^\lambda_{t}){\rm div}\bar{E}^\lambda_{t}{\rm d}x\nonumber \\ & \le&\epsilon \|{\rm div}\bar{E}^\lambda_{t}\|^2+M(\epsilon)\lambda^4(\|\nabla{\rm div}\bar{E}^\lambda \bar{E}^\lambda_{t}\|^2+\|{\rm div}\bar{E}^\lambda{\rm div}\bar{E}^\lambda_{t}\|^2)\nonumber \\ & \le&\epsilon \|{\rm div}\bar{E}^\lambda_{t}\|^2+M(\epsilon)M_s\lambda^4(\|\nabla{\rm div}\bar{E}^\lambda\|^2\| \bar{E}^\lambda_{t}\|_{H^2}^2+\|{\rm div}\bar{E}^\lambda\|_{H^1}\|{\rm div}\bar{E}^\lambda_{t}\|_{H^1}^2)\nonumber\\ & \leq &\epsilon\parallel {\rm div}\bar{E}^\lambda_{t} \parallel^2+M\lambda^2\parallel \bar{E}^\lambda_{t}\parallel^2_{H^2}\mid\mid\mid W\mid\mid\mid^2+M\mid\mid\mid W\mid\mid\mid^2G^\lambda(t),\label{eq:eq-eest23} \end{matrix}
(3.38)
\begin{matrix} && -\lambda^2 \int_{{\Bbb T}^3} {\rm div}(\bar{v}^\lambda{\rm div}\bar{E}^\lambda )_t{\rm div}\bar{E}^\lambda_{t} {\rm d}x\nonumber \\ & =&-\lambda^2 \int_{{\Bbb T}^3}( \bar{v}^\lambda_{t}\nabla{\rm div}\bar{E}^\lambda+\bar{v}^\lambda\nabla{\rm div}\bar{E}^\lambda_{t}+{\rm div}\bar{v}^\lambda_{t}{\rm div}\bar{E}^\lambda+{\rm div}\bar{v}^\lambda{\rm div}\bar{E}^\lambda_t){\rm div}\bar{E}^\lambda_{t} {\rm d}x\nonumber \\ &\leq& M(\epsilon)\lambda^4\parallel \bar{v}^\lambda_{t} \nabla {\rm div}\bar{E}^\lambda\parallel^2+M(\epsilon)\lambda^4\parallel \bar{v}^\lambda \nabla {\rm div}\bar{E}^\lambda_t\parallel^2\nonumber \\ && +M(\epsilon)\lambda^4\parallel {\rm div}\bar{v}^\lambda_{t} {\rm div}\bar{E}^\lambda\parallel^2+M(\epsilon)\lambda^4\parallel {\rm div}\bar{v}^\lambda {\rm div}\bar{E}^\lambda_t\parallel^2+\epsilon\parallel{\rm div}E_{R,t}\parallel^2\nonumber \\ &\leq & M(\epsilon)\lambda^4\parallel \bar{v}^\lambda_{t}\parallel_{H^2}^2 \parallel \nabla{\rm div}\bar{E}^\lambda\parallel^2+M(\epsilon)\lambda^4\parallel \bar{v}^\lambda\parallel_{H^2}^2 \parallel \nabla{\rm div}\bar{E}^\lambda+t\parallel^2\nonumber \\ &&M(\epsilon)\lambda^4\parallel {\rm div}\bar{v}^\lambda\parallel_{H^1}^2 \parallel {\rm div}\bar{E}^\lambda\parallel^2_{H^1}+M(\epsilon)\lambda^4\parallel {\rm div}\bar{v}^\lambda\parallel_{H^1}^2 \parallel {\rm div}\bar{E}^\lambda\parallel^2_{H^1}+\epsilon\parallel {\rm div}\bar{E}^\lambda_{t} \parallel^2\nonumber \\ & \leq& \epsilon\parallel {\rm div}\bar{E}^\lambda_{t} \parallel^2+M\mid\mid\mid W\mid\mid\mid^4+M\mid\mid\mid W\mid\mid\mid^2G^\lambda(t).\label{eq:eq-eest24} \end{matrix}
(3.39)

联合不等式(3.35)-(3.39), 并假设\lambda足够小, 可得

\begin{matrix} &&\lambda^2\frac{\rm d}{{\rm d}t}\parallel {\rm div}\bar{E}^\lambda_{t} \parallel^2+k\parallel ({\rm div}\bar{E}^\lambda_{t},\lambda \nabla{\rm div} \bar{E}^\lambda_{t})\parallel^2\nonumber \\ & \leq & M(\epsilon)\parallel(\bar{z}^\lambda,\bar{z}^\lambda_{t},\nabla\bar{z}^\lambda,\nabla \bar{z}^\lambda_{t},\bar{E}^\lambda,\bar{v}^\lambda,\bar{v}^\lambda_{t},{\rm div}\bar{v}^\lambda,{\rm div}\bar{v}^\lambda_{t})\parallel^2+M\lambda^2\parallel(\bar{E}^\lambda,\bar{E}^\lambda_{t},{\rm div}\bar{E}^\lambda)\parallel^2\nonumber \\ &&+M\mid\mid\mid W\mid\mid\mid^4+M\mid\mid\mid W\mid\mid\mid^2G^\lambda(t)+M\lambda.\label{eq:eq-eest26} \end{matrix}
(3.40)

对方程(2.13)关于t求导, 乘以\lambda^2\Delta{\rm div}\bar{E}^\lambda_{t}, 在区间{{\Bbb T}^3}上关于x积分, 有

\begin{matrix} &&\frac{\lambda^4}{2}\frac{\rm d}{{\rm d}t}\parallel\nabla {\rm div}\bar{E}^\lambda_{t} \parallel^2+\lambda^4\parallel \triangle{\rm div} \bar{E}^\lambda_{t}\parallel^2+\frac{\mu_n+\mu_p}{2}\lambda^2\int_{{\Bbb T}^3} z|\nabla{\rm div}\bar{E}^\lambda_{t}|^2{\rm d}x\nonumber \\ & =&\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3}{\rm div}B_t\triangle{\rm div}\bar{E}^\lambda_{t}{\rm d}x+\frac{\mu_n+\mu_p}{2}\lambda^2\int_{{\Bbb T}^3} z |\nabla{\rm div}\bar{E}^\lambda_{t}|^2{\rm d}x\nonumber\\ && -\frac{\mu_n+\mu_p}{2}\int_{{\Bbb T}^3} z_t\bar{E}^\lambda\triangle{\rm div} \bar{E}^\lambda_{t}{\rm d}x-\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3}{\rm div}A_t\triangle{\rm div}\bar{E}^\lambda_{t}{\rm d}x\nonumber\\ && +\lambda^2\int_{{\Bbb T}^3}(v({\rm div}\bar{E}^\lambda+{\rm div}\varepsilon))_t\triangle{\rm div}\bar{E}^\lambda_{t}{\rm d}x-\lambda^2\int_{{\Bbb T}^3} ((\bar{v}^\lambda+v){\rm div}\varepsilon)_t \triangle{\rm div}\bar{E}^\lambda_{t}{\rm d}x\nonumber \\ &&+\int_{{\Bbb T}^3} D\bar{v}^\lambda_t \triangle{\rm div}\bar{E}^\lambda_{t}{\rm d}x-\frac{\mu_n+\mu_p}{2}\int_{T^3} {(\bar{z}^\lambda\bar{E}^\lambda)_t}\triangle{\rm div}\bar{E}^\lambda_{t} {\rm d}x\nonumber\\ &&-\lambda^2\int_{{\Bbb T}^3} (\bar{v}^\lambda{\rm div}\bar{E}^\lambda)_t\triangle{\rm div}\bar{E}^\lambda_{t} {\rm d}x +\lambda^2\frac{\mu_n-\mu_p}{2}\int_{{\Bbb T}^3} {(\bar{E}^\lambda{\rm div}\bar{E}^\lambda)_t}\triangle{\rm div}\bar{E}^\lambda_{t} {\rm d}x.\label{eq:eq-ee15} \end{matrix}
(3.41)

由于方程(3.41)与方程(3.35)完全类似, 同理可得

\begin{matrix} &&\lambda^4 \frac{\rm d}{{\rm d}t}\parallel\nabla{\rm div} \bar{E}^\lambda_{t} \parallel^2+k\lambda^2\parallel( \nabla{\rm div} \bar{E}^\lambda_{t},\lambda\Delta {\rm div} \bar{E}^\lambda_{t}) \parallel^2\nonumber \\ & \leq & M\parallel(\bar{z}^\lambda,\bar{z}^\lambda_{t},\nabla \bar{z}^\lambda,\nabla \bar{z}^\lambda_{t}, \bar{v}^\lambda,\bar{v}^\lambda_{t})\parallel^2+ M\lambda^4\parallel(\nabla{\rm div}\bar{E}^\lambda,{\rm div}\bar{E}^\lambda_{t})\parallel^2\nonumber \\ && +M\lambda^2\parallel(\bar{E}^\lambda,\bar{E}^\lambda_{t},{\rm div}\bar{E}^\lambda)\parallel^2+\epsilon\frac{\mu_n+\mu_p}{2}\parallel\Delta{\rm div}\bar{E}^\lambda_{t}\parallel^2\nonumber \\ && +M\lambda^2\parallel \bar{E}^\lambda_{t}\parallel^2_{H^2}\mid\mid\mid W\mid\mid\mid^2+ M\mid\mid\mid W\mid\mid\mid^4+M\mid\mid\mid \mid W\mid\mid\mid^2G^\lambda(t)+M\lambda.\label{eq:eq-ee217} \end{matrix}
(3.42)

对方程(2.14)关于t求导, 乘以-\Delta \bar{v}^\lambda_{t}, 在区间{{\Bbb T}^3}上关于x积分, 应用分部积分, 有

\begin{matrix} && \int_{{\Bbb T}^3}(\rho+\bar{\rho}^\lambda)\bar{v}^\lambda_{tt}\triangle\bar{v}^\lambda_t {\rm d}x+A\frac{\rm d}{{\rm d}t}\parallel\nabla\bar{\rho}^\lambda_t\parallel^2+\mu\parallel\triangle\bar{v}^\lambda_t\parallel^2+\parallel\nabla{\rm div}\bar{v}^\lambda_t\parallel^2\nonumber \\ & =&-\int_{{\Bbb T}^3}(\bar{\rho}^\lambda v_t+\bar{\rho}^\lambda v \nabla v+\rho\bar{v}^\lambda \nabla v+\rho v \nabla\bar{v}^\lambda+\rho_t\bar{v}^\lambda_t )_t\triangle\bar{v}^\lambda_t{\rm d}x-\int_{{\Bbb T}^3}D\bar{E}^\lambda_t\triangle \bar{v}^\lambda_t {\rm d}x\nonumber \\ && -\lambda^2\int_{{\Bbb T}^3}(\bar{E}^\lambda{\rm div}\varepsilon+\varepsilon{\rm div}\bar{E}^\lambda+\varepsilon{\rm div}\varepsilon)_t\triangle\bar{v}_t^\lambda {\rm d}x-2A\int_{{\Bbb T}^3}(\bar{\rho}^\lambda{\rm div}v+v \nabla\bar{\rho}^\lambda)_t\nabla\rho^\lambda_t{\rm d}x\nonumber \\ && -2A\int_{{\Bbb T}^3}(\rho_t{\rm div}\bar{v}^\lambda+\bar{v}^\lambda \nabla\rho_t)\nabla\bar{\rho}^\lambda_t{\rm d}x-2A\int_{{\Bbb T}^3}(\rho \bar{v}^\lambda \nabla\bar{v}^\lambda+\bar{\rho}^\lambda v \nabla\bar{v}^\lambda+\bar{\rho}^\lambda\bar{v}^\lambda\nabla\bar{v}^\lambda)_t \triangle\bar{v}_t^\lambda {\rm d}x\nonumber \\ &&-\int_{{\Bbb T}^3}((\bar{\rho}^\lambda\bar{v}^\lambda\nabla v)_t+\bar{\rho}_t^\lambda\bar{v}^\lambda_t+\lambda^2(\bar{E}^\lambda{\rm div}\bar{E}^\lambda)_t)\triangle\bar{v}^\lambda_t {\rm d}x-2A\int_{{\Bbb T}^3}({\rm div}\bar{v}^\lambda\bar{\rho}^\lambda_t+\bar{v}^\lambda\nabla\bar{\rho}^\lambda_t)\nabla\bar{\rho}^\lambda_t{\rm d}x.\label{eq:eq-vest16} \end{matrix}
(3.43)

估计方程(3.43)右端各项. 对线性项应用Cauchy-Schwarz不等式以及Sobolev嵌入定理, 线性项可由(3.44)式控制

\begin{matrix} M \parallel &&(\bar{v}^\lambda,\nabla \bar{v}^\lambda,\bar{v}^\lambda_{t},\nabla \bar{v}^\lambda_{t},{\rm div}\bar{v}^\lambda,\nabla{\rm div}\bar{v}^\lambda, \Delta \bar{v}^\lambda_{t},\nabla{\rm div}\bar{v}^\lambda_t,\bar{\rho}^\lambda,\bar{\rho}^\lambda_t,\nabla\bar{\rho}^\lambda,\nabla\bar{\rho}^\lambda_t,\triangle\bar{\rho}^\lambda)\parallel^2\nonumber \\ && +M\lambda^2\parallel( \bar{E}^\lambda,{\rm div}\bar{E}^\lambda)\parallel^2+M(\epsilon)\lambda^4\parallel(\bar{E}^\lambda_{t},{\rm div}\bar{E}^\lambda_{t}) \parallel^2+M\lambda.\label{eq:eq-vest17} \end{matrix}
(3.44)

对非线性项, 应用方程(2.15)的导数, Cauchy-Schwarz不等式Sobolev嵌入定理, 有

\begin{matrix} &&-2A\int_{{\Bbb T}^3}(\bar{\rho}^\lambda{\rm div}v+v \nabla\bar{\rho}^\lambda)_t\nabla\rho^\lambda_t{\rm d}x-2A\int_{{\Bbb T}^3}(\rho_t{\rm div}\bar{v}^\lambda+\bar{v}^\lambda \nabla\rho_t)\nabla\bar{\rho}^\lambda_t{\rm d}x\nonumber \\ && -2A\int_{{\Bbb T}^3}(\rho \bar{v}^\lambda \nabla\bar{v}^\lambda+\bar{\rho}^\lambda v \nabla\bar{v}^\lambda +\bar{\rho}^\lambda\bar{v}^\lambda\nabla\bar{v}^\lambda)_t\triangle \bar{v}_t^\lambda {\rm d}x -\int_{{\Bbb T}^3}((\bar{\rho}^\lambda\bar{v}^\lambda\nabla v)_t+\bar{\rho}_t^\lambda\bar{v}^\lambda_t)\triangle\bar{v}^\lambda_t {\rm d}x\nonumber \\ && -\lambda^2\int_{{\Bbb T}^3}(\bar{E}^\lambda{\rm div}\bar{E}^\lambda)_t)\triangle\bar{v}^\lambda_t {\rm d}x -2A\int_{{\Bbb T}^3}({\rm div}\bar{v}^\lambda\bar{\rho}^\lambda_t +\bar{v}^\lambda\nabla\bar{\rho}^\lambda_t)\nabla\bar{\rho}^\lambda_t{\rm d}x\nonumber \\ &\leq& \epsilon \parallel(\triangle\bar{v}^\lambda_t,\nabla{\rm div}\bar{v}^\lambda,\nabla{\rm div}\bar{v}^\lambda_t,\nabla\bar{\rho}^\lambda,\nabla\bar{\rho}^\lambda_t)\parallel^2+M\parallel\bar{v}^\lambda\nabla\bar{v}^\lambda_t \parallel^2+M\parallel\bar{\rho}^\lambda\bar{v}^\lambda_t\parallel^2\nonumber \\ && +M\parallel\nabla\bar{v}^\lambda\bar{v}^\lambda_t\parallel^2+M\parallel\bar{\rho}^\lambda_t\nabla\bar{v}^\lambda\parallel^2+M\parallel\bar{v}^\lambda\bar{\rho}^\lambda_t\parallel^2\nonumber \\ && +M\parallel\nabla\bar{\rho}^\lambda\nabla\bar{v}^\lambda_t\parallel^2+M\parallel\bar{\rho}^\lambda_t{\rm div}\bar{v}^\lambda\parallel^2+M\parallel\bar{\rho}^\lambda_t\nabla\bar{\rho}^\lambda\parallel^2+M\parallel\bar{\rho}^\lambda_t\bar{v}^\lambda_t\parallel^2\nonumber \\ && +M\parallel\nabla\bar{\rho}^\lambda_t\nabla\bar{v}^\lambda\parallel^2+M\parallel\nabla\bar{\rho}^\lambda{\rm div}\bar{v}^\lambda_t\parallel^2+M\parallel\nabla\bar{\rho}^\lambda{\rm div}\bar{v}^\lambda\parallel^2+M\parallel\nabla\bar{\rho}^\lambda\bar{v}^\lambda_t\parallel^2\nonumber \\ && +M\parallel\bar{\rho}^\lambda\nabla\bar{v}^\lambda_t\parallel^2+\lambda^4M\parallel\bar{E}^\lambda_t{\rm div}\bar{E}^\lambda\parallel^2+M\lambda^4\parallel\bar{E}^\lambda{\rm div}\bar{E}^\lambda_t\parallel^2\nonumber \\ & \leq &\epsilon \parallel(\triangle\bar{v}^\lambda_t,\nabla{\rm div}\bar{v}^\lambda,\nabla{\rm div}\bar{v}^\lambda_t,\nabla\bar{\rho}^\lambda,\nabla\bar{\rho}^\lambda_t)\parallel^2+M\parallel\nabla\bar{v}^\lambda_t \parallel^2\parallel\bar{v}^\lambda\parallel^2_{H^2}\nonumber \\ && +M\parallel\bar{v}^\lambda_t \parallel^2_{H^1}\parallel\bar{\rho}^\lambda\parallel^2_{H^1}+M\parallel\bar{v}^\lambda_t \parallel^2_{H^1}\parallel\nabla\bar{v}^\lambda\parallel^2_{H^1}+M\parallel\bar{\rho}^\lambda_t \parallel^2_{H^1}\parallel\nabla\bar{v}^\lambda\parallel^2_{H^1}\nonumber \\ && +M\parallel\bar{\rho}^\lambda_t \parallel^2\parallel\bar{v}^\lambda\parallel^2_{H^2}+M\parallel\bar{v}^\lambda_t \parallel^2_{H^1}\parallel\bar{\rho}^\lambda_t\parallel^2_{H^1}+M\parallel\bar{\rho}^\lambda_t \parallel^2_{H^1}\parallel{\rm div}\bar{v}^\lambda\parallel^2_{H^1}\nonumber \\ && +M\parallel\bar{\rho}^\lambda_t \parallel^2_{H^1}\parallel\nabla\bar{\rho}^\lambda\parallel^2_{H^1}+M\parallel\nabla\bar{\rho}^\lambda_t \parallel^2_{H^1}\parallel{\rm div}\bar{v}^\lambda\parallel^2_{H^1}+M\parallel\nabla\bar{\rho}^\lambda_t \parallel^2_{H^1}\parallel\nabla\bar{v}^\lambda\parallel^2_{H^1}\nonumber \\ && +M\parallel\nabla\bar{\rho}^\lambda_t \parallel^2_{H^1}\parallel{\rm div}\bar{v}^\lambda_t\parallel^2_{H^1}+M\parallel\nabla\bar{\rho}^\lambda \parallel^2_{H^1}\parallel{\rm div}\bar{v}^\lambda\parallel^2_{H^1}+M\parallel\triangle\bar{\rho}^\lambda\parallel^2\parallel\bar{v}^\lambda_t\parallel^2_{H^2}\nonumber \\ && +M\lambda^4\parallel\bar{E}^\lambda_t \parallel^2_{H^1}\parallel{\rm div}\bar{E}^\lambda\parallel^2_{H^1}+M\lambda^4\parallel\bar{E}^\lambda \parallel^2_{H^2}\parallel{\rm div}\bar{E}^\lambda_t\parallel^2\nonumber \\ & \leq& \epsilon \parallel(\triangle\bar{v}^\lambda_t,\nabla{\rm div}\bar{v}^\lambda,\nabla{\rm div}\bar{v}^\lambda_t,\nabla\bar{\rho}^\lambda,\nabla\bar{\rho}^\lambda_t)\parallel^2+M\mid\mid\mid W\mid\mid\mid^4.\label{eq:eq-vest19} \end{matrix}
(3.45)

联合不等式(3.43)-(3.45), 并应用不等式(3.46)

\begin{equation} \int_{{\Bbb T}^3}(\rho+\bar{\rho}^\lambda)\bar{v}^\lambda_{tt}\triangle\bar{v}^\lambda_t {\rm d}x\geq \frac{\underline{\rho}}{2}\int_{{\Bbb T}^3}\bar{v}^\lambda_{tt}\triangle\bar{v}^\lambda_t {\rm d}x=\frac{\underline{\rho}}{4}\frac{\rm d}{{\rm d}t}\parallel\nabla\bar{v}^\lambda_t\parallel^2,\label{eq:rvt3} \end{equation}
(3.46)

\rho\bar{\rho}^\lambda满足下面的不等式

\begin{equation} \frac{\underline{\rho}}{2}\leq \rho-|\bar{\rho}^\lambda|_{L^\infty}\leq\rho+\bar{\rho}^\lambda\leq\overline{\rho}+|\bar{\rho}^\lambda|_{L^\infty}\leq2\overline{\rho},\label{eq:rvt4} \end{equation}
(3.47)

其中\underline{\rho}\overline{\rho}分别是下确界和上确界, 可得

\begin{matrix} && \epsilon\frac{\rm d}{{\rm d}t}\parallel(\nabla\bar{\rho}^\lambda_t,\nabla\bar{v}^\lambda_t) \parallel^2+k\parallel (\triangle\bar{v}^\lambda_t,\nabla{\rm div}\bar{v}^\lambda_t)\parallel^2 \nonumber \\ & \leq & M\parallel(\bar{v}^\lambda,\bar{v}^\lambda_t,\nabla\bar{v}^\lambda,{\rm div}\bar{v}^\lambda,\nabla\bar{v}^\lambda_t,\nabla{\rm div}\bar{v}^\lambda,\bar{\rho}^\lambda,\bar{\rho}^\lambda_t,\nabla\bar{\rho}^\lambda,\nabla\bar{\rho}^\lambda_t,\triangle\bar{\rho}^\lambda,\bar{E}^\lambda, \bar{E}^\lambda_t)\parallel^2\nonumber \\ && +M\lambda^4\parallel({\rm div}\bar{E}^\lambda,{\rm div} \bar{E}^\lambda_t)\parallel^2 +M\mid\mid\mid W\mid\mid\mid^4+M\lambda.\label{eq:eq-vest20} \end{matrix}
(3.48)

联合\delta_4(3.32),(3.39),(3.42)以及(3.48)式, 在区间[t]上关于t 积分,取\delta_4>0足够小, 可得不等式(3.28). 证毕

定理3.6 估计\parallel(\triangle \bar{z}^\lambda, {\rm div}\bar{E}^\lambda,\lambda\nabla {\rm div}\bar{E}^\lambda, \lambda^2\triangle {\rm div}\bar{E}^\lambda,\triangle \bar{v}^\lambda,\nabla{\rm div}\bar{v}^\lambda,\nabla\bar{\rho}^\lambda)\parallel^2, 有

\begin{matrix} &&\parallel(\triangle \bar{z}^\lambda, {\rm div}\bar{E}^\lambda,\lambda\nabla {\rm div}\bar{E}^\lambda, \lambda^2\triangle {\rm div}\bar{E}^\lambda,\triangle \bar{v}^\lambda,\nabla{\rm div}\bar{v}^\lambda,\nabla\bar{\rho}^\lambda)\parallel^2\nonumber \\& \leq& M\parallel(\nabla\bar{z}^\lambda,\nabla\bar{v}^\lambda,\nabla\bar{\rho}^\lambda,\nabla\bar{z}^\lambda_t,\nabla\bar{v}^\lambda_t,\nabla\bar{\rho}^\lambda_t)\parallel^2\nonumber \\ && \lambda\parallel({\rm div}\bar{E}^\lambda,\lambda\nabla{\rm div}\bar{E}^\lambda,{\rm div}\bar{E}^\lambda_t,\lambda\nabla{\rm div}\bar{E}^\lambda_t)\parallel^2+M\mid\mid\mid W\mid\mid\mid^4+M\lambda. \label{eq:lw7} \end{matrix}
(3.49)

注3.3 不等式(3.49)可由不等式(3.26)和 Green公式而得.

4 证明定理

在定理的假设下, 由标准的椭圆正则性理论, 有

\begin{equation} \parallel \partial_t^i\bar{z}^\lambda \parallel_{H^2}^2\leq M(\parallel \partial_t^i\bar{z}^\lambda \parallel^2+\parallel \Delta \partial_t^i\bar{z}^\lambda \parallel^2),i=0,1,\label{eq:eq-pf1} \end{equation}
(4.1)
\begin{equation} \parallel \partial_t^i\bar{v}^\lambda \parallel_{H^2}^2\leq M(\parallel \partial_t^i\bar{v}^\lambda \parallel^2+\parallel \Delta \partial_t^i\bar{v}^\lambda \parallel^2),i=0,1,\label{eq:eq-pf3} \end{equation}
(4.2)
\begin{equation} \parallel \partial_t^i\bar{\rho}^\lambda \parallel_{H^2}^2\leq M(\parallel \partial_t^i\bar{\rho}^\lambda \parallel^2+\parallel \Delta \partial_t^i\bar{\rho}^\lambda \parallel^2),i=0,1,\label{eq:eq-pf4} \end{equation}
(4.3)
\begin{equation} \parallel \partial_t^i\bar{E}^\lambda \parallel_{H^2}^2\leq M(\parallel \partial_t^i\bar{E}^\lambda \parallel^2+\parallel \Delta \partial_t^i{\rm div}\bar{T}^\lambda \parallel^2), i=0,1~~s=1,2.\label{eq:eq-pf6} \end{equation}
(4.4)

\Gamma^\lambda(t)\mid\mid\mid W\mid\mid\mid的表达式, 并应用不等式(4.1)-(4.4), 知存在独立于\lambda的两个正常数C_1C_2, 使得

\begin{equation} C_1\mid\mid\mid W\mid\mid\mid^2\leq\Gamma^\lambda(t)\leq C_2\mid\mid\mid W\mid\mid\mid^2.\label{eq:equiv-1} \end{equation}
(4.5)

应用不等式(4.5), 并计算(3.2)+\delta(3.4)+(3.25)+\delta_1(3.26)+\delta_2(3.28)+(3.49), 取\delta,\delta_1,\delta_2,\lambda足够小, 可得

\begin{matrix} \Gamma^\lambda(t)+\int_0^tG^\lambda(s){\rm d}s &\leq & M\tilde{\Gamma}^\lambda(t=0)+M\int_0^t(\Gamma^\lambda(s)+(\Gamma^\lambda(s))^2){\rm d}s\nonumber\\ && +M(\Gamma^\lambda(t))^2 +M\int_0^t\Gamma^\lambda(s)G^\lambda(s){\rm d}s+M\lambda,\label{eq:txg3-1} \end{matrix}
(4.6)

其中

\begin{matrix} \tilde{\Gamma^\lambda}(0)&=&\parallel(\bar{z}^\lambda,\bar{v}^\lambda,\bar{\rho}^\lambda,\bar{z}_t^\lambda,\bar{v}_t^\lambda,\bar{\rho}_t^\lambda,\nabla\bar{z}^\lambda,\nabla\bar{v}^\lambda,\nabla\bar{\rho}^\lambda,\nabla\bar{z}_t^\lambda,\nabla\bar{v}_t^\lambda,\nabla\bar{\rho}_t^\lambda)\parallel^2(t=0)\nonumber \\ &&+\lambda^2\parallel (\bar{E}^\lambda,\lambda{\rm div}\bar{E}^\lambda,\bar{E}_t^\lambda,\lambda{\rm div}\bar{E}_t^\lambda,\lambda\nabla{\rm div}\bar{E}^\lambda,\lambda\nabla{\rm div}\bar{E}_t^\lambda) \parallel^2(t=0).\label{eq:txg4-1} \end{matrix}
(4.7)

不等式(4.6)是一个\lambda -加权的Growall型熵积分不等式, 因此有下面的结论.

定理4.1 假设

\begin{equation} \tilde{\Gamma^\lambda}(t=0)\leq M \lambda, \label{eq:init-s} \end{equation}
(4.8)

其中M是独立于\lambda的正常数. 那么对于任意的T\in (0,T_{\max}), T_{\max}\leq\infty, 存在正常数\lambda_0\ll1, 使得对于任意的\lambda\leq \lambda_0,\delta\in (0,1), 0\leq t\leq T不等式

\begin{equation} \Gamma^\lambda(t)\leq M \lambda^{1-\delta}\label{eq:con-res} \end{equation}
(4.9)

成立.

注4.1 此定理的证明类似于文献[引理10], 此处省略其证明.

按照初值的假设, 易知(4.8)式成立, 应用定理3.5, 知不等式(4.9)成立. 由(4.9)式, 可得不等式(2.24). 定理得证.

参考文献

Cimartti G.

Invariant regions for the Nernst-Planck equations

Ann Mat Pura Appl, 1998, 175: 93-118

DOI:10.1007/BF01783677      URL     [本文引用: 1]

Rubinstein I.

Electro-Diffusion of Ions

Philadelphia: Siam, 1990

[本文引用: 1]

Li F C.

Quasi-neutral limit of the electro-diffusion model arising in electrohydrodynamics

J Diff Equations, 2009, 246: 3620-3641

DOI:10.1016/j.jde.2009.01.027      URL     [本文引用: 1]

Wang S, Jiang L M, Liu C D.

Quasi-neutral limit and the boundary layer problem of Planck Nernst Poisson Navier Stokes equations for electro hydrodynamics

J Diff Equations, 2009, 267: 3475-3523

DOI:10.1016/j.jde.2019.04.011      URL     [本文引用: 3]

Wang S, Jiang L M.

Quasi-neutral limit and the boundary layer problem of the electro diffusion model arising in electro hydrodynamics

Nonlinear Anal: RWA, 2021, 59: 103266

DOI:10.1016/j.nonrwa.2020.103266      URL     [本文引用: 1]

Yang J W, Ju Q C.

Convergence of the quantum Navier-Stokes-Poisson equations to the incompressible Euler equations for general initial data

Nonlinear Anal: RWA, 2015, 23: 148-159

DOI:10.1016/j.nonrwa.2014.12.003      URL     [本文引用: 1]

Liu C, Wang Y, Yang T.

On the ill-posedness of the prandtl equations in three-dimensional space

Arch Ration Mech Anal, 2016, 220: 83-108

DOI:10.1007/s00205-015-0927-1      URL     [本文引用: 1]

Brenier Y.

Convergence of the Vlasov-Poisson system to the incompressible Euler equations

Comm Part Diff Equations, 2000, 25: 737-754

DOI:10.1080/03605300008821529      URL     [本文引用: 1]

Alì D, Bini D, Rionero S.

Existence and relaxation limit for smooth solution to the Euler-Poisson model for semiconductors

Siam J Math Anal, 2000, 32: 572-587

DOI:10.1137/S0036141099355174      URL     [本文引用: 1]

Alì G, Jüngel A.

Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasmas

J Diff Equations, 2003, 190: 663-685

DOI:10.1016/S0022-0396(02)00157-2      URL     [本文引用: 1]

Gasser I, Levermore C D, Markowich P, Shmeiser C.

The initial time layer problem and the quasi-neutral limit in the semiconductor drift-diffusion model

European J Appl Math, 2001, 12: 497-512

DOI:10.1017/S0956792501004533      URL     [本文引用: 1]

Guo Y, Strauss W.

Stability of semiconductor states with insulating and contact boundary conditions

Arch Rat Mech and Anal, 2006, 179: 1-30

DOI:10.1007/s00205-005-0369-2      URL     [本文引用: 1]

Hsiao L, Li F C, Wang S.

Coupled quasi-neutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system

Commun Pure Appl Anal, 2008, 7: 579-589

[本文引用: 1]

Jüngel A. Peng Y J.

Ahierarchy of hydrodynamic models for plasmas: Quasi-neutral limits in the drift-diffusion equations

Asymptot Anal, 2001, 28: 49-73

[本文引用: 1]

Roubicek T. Nonlinear Partial Differential Equations with Applications. Basel: Birkhauser Verlag, 2005

[本文引用: 1]

Suzuki M.

Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics

Kinet Relat Models, 2011, 4: 569-588

DOI:10.3934/krm.2011.4.569      URL     [本文引用: 1]

Temam R. Navier-Stokes Equations Theory and Numerical Analysis. New York: North-Holland, 1977

[本文引用: 1]

Wang S.

Quasi-neutral limit of Euler-Poisson system with and without viscosity

Comm Part Diff Equations, 2004, 29: 419-456

DOI:10.1081/PDE-120030403      URL     [本文引用: 1]

Wang S.

Quasi-neutral limit of the multi-dimensional drift-diffusion-Poisson model for semiconductor with pn-junctions

Math Models Methods Appl Sci, 2006, 16: 737-757

[本文引用: 1]

Hsiao L, Wang S.

Quasi-neureal limit of a time dependent drift-diffusion-Poisson model for p-n junction semiconductor devices

J Diff Eqns, 2006, 225: 411-439

DOI:10.1016/j.jde.2006.01.022      URL    

/