数学物理学报 ›› 2023, Vol. 43 ›› Issue (1): 219-237.

• • 上一篇    下一篇

三维柱对称定常非齐次不可压 Euler 方程管道问题解的适定性及无穷远渐近速率

林杰(),王天怡*()   

  1. 武汉理工大学理学院数学系 武汉430070
  • 收稿日期:2022-05-13 修回日期:2022-08-05 出版日期:2023-02-26 发布日期:2023-03-07
  • 通讯作者: *王天怡, E-mail: tianyiwang@whut.edu.cn
  • 作者简介:林杰, E-mail: linjie@whut.edu.cn
  • 基金资助:
    国家自然科学基金(11971307)

Well-Posedness and Convergence Rates of Three-Dimensional Incompressible Euler Flows in Axisymmetric Nozzles with Symmetric Body

Lin Jie(),Wang Tianyi*()   

  1. Department of Mathematics, School of Science, Wuhan University of Technology, Wuhan 430070
  • Received:2022-05-13 Revised:2022-08-05 Online:2023-02-26 Published:2023-03-07
  • Supported by:
    The NSFC(11971307)

摘要:

该文针对可以包含障碍物的三维柱对称无穷管道问题, 运用流函数方法转化为椭圆方程的边值问题, 利用能量估计和闸函数方法, 证明了定常非齐次不可压 Euler 方程解的存在性和唯一性以及流线的非退化性即 $ U>0$. 通过构造比较函数和极大值原理, 在漩涡速度 $W$ 不等于 0 的情况下, 得到了两种边界的收敛速率: 若无穷管道在有限长度以外是平边界, 则方程的解以指数速率收敛到渐近状态; 若无穷管道以多项式速率收敛到平边界, 则方程的解以相同的多项式速率收敛到渐近状态.

关键词: 非齐次不可压 Euler 方程, 轴对称管道, 适定性, 渐近收敛速率

Abstract:

This paper studies the three-dimensional incompressible Euler flows in axisymmetric nozzles with a symmetric body. The well-posedness is established by stream function method and barrier function. Base on the above well-posedness, the far field convergence rates of the solutions are studied: if the infinite nozzles are the flat boundary outside the finite length, the solution of the equation converges to an asymptotic state at the exponential rate; if the infinite nozzles converge to the flat boundary with the polynomial rates, the solutions converge to the asymptotic states at the same polynomial rates.

Key words: Incompressible Euler equations, Axisymmetric Nozzles, Well-posedness, Convergence rates

中图分类号: 

  • O175.2