[1] |
Malomed B. Nonlinear Schrödinger Equations//Scott A. Encyclopedia of Nonlinear Science. New York: Routledge, 2005
|
[2] |
Belmonte B J, Perez V M, Vekslerchik V, Torres P J. Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys Rev Lett, 2007, 98: 064102
doi: 10.1103/PhysRevLett.98.064102
|
[3] |
Guo Y J, Lu L. Mean-field limit of Bose-Einstein condensates with attractive interactions in $\Bbb R^2$. Acta Math Sci, 2016, 36B(2): 317-324
|
[4] |
Weinstein M I. Nonlinear Schrödinger equations and sharp interpolations estimates. Commun Math Phys, 1983, 87: 567-576
doi: 10.1007/BF01208265
|
[5] |
Phan T V. Blow-up profile of Bose-Einstein condensate with singular potentials. J Math Physics, 2017, 58: 072301
doi: 10.1063/1.4995393
|
[6] |
Phan T V. Ground state of the mass-critical inhomogeneous nonlinear Schrödinger functional. J Math Anal Appl, 2020, 486: 1-19
|
[7] |
Dinh V D, Keraani S. A compactness result for inhomogeneous nonlinear Schrödinger equations. Nonlinear Anal, 2022, 215: 1-29
|
[8] |
Zhang J. Stability of attractive Bose-Einstein condensates. J Stati Phys, 2000, 101: 731-746
|
[9] |
Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case: Part 1. Ann Inst H Pioncaré, 1984, 4: 109-145
|
[10] |
Deng Y B, Guo Y J, Lu L. On the collapse and concentration of Bose-Einstein condensates with inhomogeneous attractive interactions. Calc Var, 2015, 54: 99-118
doi: 10.1007/s00526-014-0779-9
|
[11] |
Deng Y, Guo Y, Lu L. Threshold behavior and uniqueness of ground states for mass critical inhomogeneous Schrödinger equations. J Math Phys, 2018, 59: 011503
doi: 10.1063/1.5008924
|
[12] |
Gao Y, Li S. Constraint minimizers of inhomogeneous mass subcritical minimization problems. Math Methods Appl Sci, 2021, 44: 10062-10075
doi: 10.1002/mma.7390
|
[13] |
Guo Y, Seiringer R. On the mass concentration for Bose-Einstein condensation with attractive interactions. Lett Math Phys, 2014, 104: 141-156
doi: 10.1007/s11005-013-0667-9
|
[14] |
Guo Y, Zeng X, Zhou H. Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials. Ann Inst H Pioncaré Anal Non Linaire, 2016, 33: 809-828
|
[15] |
Wang Q, Zhao D. Existence and mass concentration of 2D attractive Bose-Einstein condensates with periodic potentials, J Diff Equations, 2017, 262: 2684-2704
doi: 10.1016/j.jde.2016.11.004
|
[16] |
Guo Y, Wang Z, Zeng X, Zhou H. Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials. Nonlinearity, 2018, 31: 957-979
doi: 10.1088/1361-6544/aa99a8
|
[17] |
Cazenave T. Semilinear Schrödinger Equations Providence: AMS, 2003
|