数学物理学报 ›› 2023, Vol. 43 ›› Issue (1): 291-304.
收稿日期:
2022-03-31
修回日期:
2022-08-05
出版日期:
2023-02-26
发布日期:
2023-03-07
通讯作者:
*彭建文, E-mail: 基金资助:
Liu Fuqin,Peng Jianwen*(),Luo Honglin
Received:
2022-03-31
Revised:
2022-08-05
Online:
2023-02-26
Published:
2023-03-07
Supported by:
摘要:
交替方向乘子法是求解两块可分离凸优化问题的有效方法, 但是对于三块不可分的非凸优化问题的交替方向乘子法的收敛性可能无法保证. 该文主要研究的是用线性化广义Bregman交替方向乘子法(L-G-BADMM)求解目标函数是三块不可分的非凸极小化问题的收敛性分析. 在适当假设条件下, 对算法中子问题进行求解并构建满足Kurdyka-Lojasiewicz性质的效益函数, 经过理论证明可以得到该算法的收敛性.
中图分类号:
刘富勤, 彭建文, 罗洪林. 具有线性化技术的三块非凸不可分优化问题Bregman ADMM收敛性分析[J]. 数学物理学报, 2023, 43(1): 291-304.
Liu Fuqin, Peng Jianwen, Luo Honglin. Convergence Analysis of Bregman ADMM for Three-Block Nonconvex Indivisible Optimization Problems with Linearization Technique[J]. Acta mathematica scientia,Series A, 2023, 43(1): 291-304.
[1] | Banerjee A, Merugu S, Dhillon I, Ghosh J. Clustering with bregman divergences. Journal of Machine Learning Research, 2005, 6: 1705-1749 |
[2] |
Bolte J, Daniilidis A, Ley O, et al. Characterizations of Lojasiewicz inequalities and applications: subgradient flows, talweg, convexity. Transactions of the American Mathematical Society, 2010, 362(6): 3319-3363
doi: 10.1090/S0002-9947-09-05048-X |
[3] |
Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations Trends in Machine Learning, 2010, 3(1): 1-122
doi: 10.1561/2200000016 |
[4] | Bregman L M. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 1967, 7(3): 200-217 |
[5] |
Chao M T, Cheng C Z, Zhang H B. A linearized alternating direction method of multipliers with substitution procedure. Asia-Pacific Journal of Operational Research, 2015, 32(3): 1550011
doi: 10.1142/S0217595915500116 |
[6] | Chao M T, Deng Z, Jian J B. Convergence of linear Bregman ADMM for nonconvex and nonsmooth problems with nonseparable structure. Complexity, 2020, 2020: Art ID 6237942 |
[7] |
Chao M T, Zhang Y, Jian J B. An inertial proximal alternating direction method of multipliers for nonconvex optimization. International Journal of Computer Mathematics, 2021, 98(6): 1199-1217
doi: 10.1080/00207160.2020.1812585 |
[8] |
Chen C H, He B S, Ye Y Y, et al. The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Mathematical Programming, 2016, 155: 57-79
doi: 10.1007/s10107-014-0826-5 |
[9] |
Deng W, Yin W T. On the global and linear convergence of the generalized alternating direction method of multipliers. Journal of Scientific Computing, 2016, 66(3): 889-916
doi: 10.1007/s10915-015-0048-x |
[10] |
Feng J K, Zhang H B, Cheng C Z, et al. Convergence analysis of L-ADMM for multi-block linear-constrained separable convex minimization problem. Journal of the Operations Research Society of China, 2015, 3(4): 563-579
doi: 10.1007/s40305-015-0084-0 |
[11] |
Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers and Mathematics with Applications, 1976, 2(1): 17-40
doi: 10.1016/0898-1221(76)90003-1 |
[12] | Glowinski R, Marroco A. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires. Journal of E-quine Veterinary Science, 1975, 2(2): 41-76 |
[13] |
Guo K, Han D R, Wang D Z W, et al. Convergence of ADMM for multi-block nonconvex separable optimization models. Frontiers of Mathematics in China, 2017, 12(5): 1139-1162
doi: 10.1007/s11464-017-0631-6 |
[14] |
Guo K, Hand D R, Wu T T. Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints. International Journal of Computer Mathematics, 2017, 94(8): 1653-1669
doi: 10.1080/00207160.2016.1227432 |
[15] | Guo K, Wang X. Convergence of generalized alternating direction method of multipliers for nonseparable nonconvex objective with linear constraints. Journal of Mathematical Research with Applications, 2018, 38(5): 523-540 |
[16] |
Hong M Y, Lou Z Q, Razaviyayn M. Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM Journal on Optimization, 2016, 26(1): 337-364
doi: 10.1137/140990309 |
[17] |
Li M, Sun D F, Toh K C. A convergent 3-blocksemi-proximal ADMM for convex minimization problems with one strongly convex block. Asia-Pacific Journal of Operational Research, 2015, 32(4): 1550024
doi: 10.1142/S0217595915500244 |
[18] | Rockafellar R T, Wets R J B. Variational Analysis. Berlin: Springer Science and Business Media, 2009 |
[19] | Wang F H, Cao W F, Xu Z B. Convergence of multi-block Bregman ADMM for nonconvex composite problems. Science China Information Sciences, 2018, 61(12): 1-12 |
[20] | Wang F H, Xu Z B, Xu H K. Convergence of Bregman alternating direction method with multipliers for nonconvex composite problems. arXiv: 1410.8625 |
[21] | Wang H H, Banerjee A. Bregman alternating direction method of multipliers//Ghahramani Z, Welling M, Cortes C, et al. Advances in Neural Information Processing Systems, 2014: 2816-2824 |
[22] |
Xu Z B, Chang X Y, Xu F M, Zhang H. ![]() ![]() ![]() doi: 10.1109/TNNLS.2012.2197412 |
[23] |
Yang W H, Han D. Linear Convergence of the alternating direction method of multipliers for a class of convex optimization problems. SIAM Journal on Numerical Analysis, 2016, 54(2): 625-640
doi: 10.1137/140974237 |
[24] |
Yashtini M. Multi-block nonconvex nonsmooth proximal ADMM: Convergence and rates Under Kurdyka-ojasiewicz property. Journal of Optimization Theory and Applications, 2021, 190(3): 966-998
doi: 10.1007/s10957-021-01919-7 |
[25] |
Zeng J S, Fang J, Xu Z B. Sparse SAR imaging based on ![]() ![]() ![]() |
[26] |
Zeng J S, Lin S B, Wang Y, et al. ![]() ![]() ![]() doi: 10.1109/TSP.2014.2309076 |
[27] |
Zeng J S, Xu Z B, Zhang B, et al. Accelerated ![]() ![]() ![]() doi: 10.1016/j.sigpro.2012.12.017 |
[1] | 张厚超, 王俊俊, 石东洋. Extended Fisher-Kolmogorov方程的一类低阶非协调混合有限元方法[J]. 数学物理学报, 2018, 38(3): 571-587. |
[2] | 张宁, 夏铁成. 一个新非线性可积晶格族和它们的可积辛映射[J]. 数学物理学报, 2017, 37(5): 814-824. |
[3] | 魏含玉, 夏铁成. 广义Broer-Kaup-Kupershmidt孤子方程的拟周期解[J]. 数学物理学报, 2016, 36(2): 317-327. |
[4] | 张玲, 祝红玲. 超Li系统的Bargmann对称约束和双非线性化[J]. 数学物理学报, 2014, 34(5): 1287-1295. |
[5] | 王勤龙; 刘一戎. 一类五次多项式系统原点等时中心的分析[J]. 数学物理学报, 2007, 27(6): 1044-1053. |
[6] | 申培萍;杨长森. 广义几何规划的全局优化算法[J]. 数学物理学报, 2006, 26(3): 382-386. |
[7] | 徐西祥, 王世范. 一族离散的可积Hamilton方程与可积的辛映射[J]. 数学物理学报, 2003, 23(3): 298-305. |
[8] | 严荣沐. 一类周期全纯自同构的线性化[J]. 数学物理学报, 2002, 22(4): 525-527. |
[9] | 周汝光. 一个求孤子方程有限带势解的方法[J]. 数学物理学报, 1998, 18(2): 228-234. |
[10] | 尹会成. 两个自变量的一阶非线性严格双曲组解的正则性[J]. 数学物理学报, 1995, 15(S1): 24-31. |
[11] | 李梦如, 李雪梅. 4×4AKNS方程族的Lax表示及其对合解[J]. 数学物理学报, 1995, 15(3): 297-302. |
[12] | 韩正之, 郑毓蕃, 张钟俊. 非线性系统的一种新标准型(Ⅰ)——观察器型[J]. 数学物理学报, 1992, 12(3): 318-324. |
[13] | 缪益华. 可微变换在不动流形处的局部标准化[J]. 数学物理学报, 1989, 9(3): 301-309. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 84
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 97
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|