数学物理学报 ›› 2023, Vol. 43 ›› Issue (1): 249-260.
收稿日期:
2021-04-22
修回日期:
2022-07-05
出版日期:
2023-02-26
发布日期:
2023-03-07
通讯作者:
*张雪康, E-mail: 作者简介:
万山林, E-mail: 基金资助:
Zhang Xuekang1,*(),Wan Shanlin1(
),Shu Huisheng2(
)
Received:
2021-04-22
Revised:
2022-07-05
Online:
2023-02-26
Published:
2023-03-07
Supported by:
摘要:
该文研究了基于连续时间状态观测的
中图分类号:
张雪康, 万山林, 舒慧生.
Zhang Xuekang, Wan Shanlin, Shu Huisheng. Parameter Estimation for Nonlinear Stochastic Differential Equations Driven by
[1] | Applebaum D. Lévy Processes and Stochastic Calculus. United Kingdom: Cambridge University Press, 2009 |
[2] | Basawa I, Scott D. Asymptotic Optimal inference for Non-ergodic Models. New York: Springer, 1983 |
[3] |
Bercu B, ProÏa F, Savy N. On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes. Statist Probab Lett, 2014, 85: 36-44
doi: 10.1016/j.spl.2013.11.002 |
[4] |
Bo L, Wang Y, Yang X, Zhang G. Maximum likelihood estimation for reflected Ornstein-Uhlenbeck processes. J Statist Plann Inference, 2011, 141: 588-596
doi: 10.1016/j.jspi.2010.07.001 |
[5] |
Dietz H. Asymptotic behavior of trajectory fitting estimators for certain non-ergodic SDE. Stat Inference Stoch Process, 2001, 4: 249-258
doi: 10.1023/A:1012254332474 |
[6] | Dietz H, Kutoyants Y. A class of minimum-distance estimators for diffusion processes with ergodic properties. Stat Decis, 1997, 15: 211-227 |
[7] | Dietz H, Kutoyants Y. Parameter estimation for some non-recurrent solutions of SDE. Stat Decis, 2003, 21: 29-45 |
[8] |
Fama E. Mandelbrot and the stable Paretian hypothesis. J Business, 1963, 36: 420-429
doi: 10.1086/294633 |
[9] | Hu Y, Long H. Parameter estimation for Ornstein-Uhlenbeck processes driven by α-stable Lévy motions. Commun Stoch Anal, 2007, 1: 175-192 |
[10] |
Hu Y, Long H. Least squares estimator for Ornstein-Uhlenbeck processes driven by α-stable motions. Stochastic Process Appl, 2009, 119: 2465-2480
doi: 10.1016/j.spa.2008.12.006 |
[11] | Hu Y, Long H. On the singularity of least squares estimator for mean-reverting α-stable motions. Acta Math Sci, 2009, 29B(3): 599-608 |
[12] | Janicki A, Weron A. Simulation and Chaotic Behavior of α-stable Stochastic Processes. New York: Marcel Dekker, 1994 |
[13] | Jeong H, Tomber B, Albert R, et al. The large-scale organization of metabolic networks. Nature, 2000, 407: 378-382 |
[14] |
Jiang H, Dong X. Parameter estimation for the non-stationary Ornstein-Uhlenbeck process with linear drift. Stat Papers, 2015, 56: 257-268
doi: 10.1007/s00362-014-0580-z |
[15] |
Kessler M. Estimation of an ergodic diffusion from discrete observations. Scand J Statist, 1997, 24: 211-229
doi: 10.1111/1467-9469.00059 |
[16] | Kutoyants Y. Statistical Inference for Ergodic Diffusion Processes. Heidelberg: Springer-Verlag, 2004 |
[17] | Long H. Parameter estimation for a class of stochastic differential equations driven by small stable noises from discrete observations. Acta Math Sci, 2010, 30B(3): 645-663 |
[18] |
Mandelbrot B. The Pareto-Lévy law and the distribution of income. Int Econ Rev, 1960, 1: 79-106
doi: 10.2307/2525289 |
[19] |
Pan Y, Yan L. The least squares estimation for the α-stable Ornstein-Uhlenbeck process with constant drift. Methodol Comput Appl Probab, 2019, 21: 1165-1182
doi: 10.1007/s11009-018-9654-z |
[20] | Sato K. Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press, 1999 |
[21] |
Shimizu Y. Local asymptotic mixed normality for discretely observed non-recurrent Ornstein-Uhlenbeck processes. Ann Inst Stat Math, 2012, 64: 193-211
doi: 10.1007/s10463-010-0307-4 |
[22] |
Xu W, Wu C, Dong Y, Xiao W. Modeling Chinese stock returns with stable distribution. Math Comput Model, 2011, 54: 610-617
doi: 10.1016/j.mcm.2011.03.004 |
[23] |
Zang Q, Zhang L. Asymptotic behaviour of the trajectory fitting estimator for reflected Ornstein-Uhlenbeck Processes. J Theor Probab, 2019, 32: 183-201
doi: 10.1007/s10959-017-0796-7 |
[24] |
Zang Q, Zhu C. Asymptotic behaviour of parametric estimation for nonstationary reflected Ornstein-Uhlenbeck processes. J Math Anal Appl, 2016, 444: 839-851
doi: 10.1016/j.jmaa.2016.06.067 |
[25] |
Zhang S, Zhang X. A least squares estimator for discretely observed Ornstein-Uhlenbeck processes driven by symmetric α-stable motions. Ann Inst Statist Math, 2013, 65: 89-103
doi: 10.1007/s10463-012-0362-0 |
[26] |
Zhang X, Yi H, Shu H. Nonparametric estimation of the trend for stochastic differential equations driven by small α-stable noises. Statist Probab Lett, 2019, 151: 8-16
doi: 10.1016/j.spl.2019.03.012 |
[27] |
Zhang X, Yi H, Shu H. Parameter estimation for non-stationary reflected Ornstein-Uhlenbeck processes driven by α-stable noises. Statist Probab Lett, 2020, 156: 108617
doi: 10.1016/j.spl.2019.108617 |
[28] |
Zhang X, Yi H, Shu H. Parameter estimation for certain nonstationary processes driven by α-stable motions. Comm Statist Theory Methods, 2021, 50: 95-104
doi: 10.1080/03610926.2019.1630436 |
[29] | Zolotarev V. One-Dimensional Stable Distribution. Providence: American Mathematical Society, 1986 |
[1] | 费晨,费为银. 分布不确定下随机微分方程参数最小二乘估计[J]. 数学物理学报, 2019, 39(6): 1499-1513. |
[2] | 王继霞, 肖庆宪. 非时齐扩散模型中扩散系数的局部估计[J]. 数学物理学报, 2015, 35(2): 332-344. |
[3] | 陶宝. 负极值指标估计量的渐近性质[J]. 数学物理学报, 2014, 34(3): 611-618. |
[4] | 邱瑾, 陆传荣. 一类统计量的乘积的渐近性质和几乎处处中心极限定理[J]. 数学物理学报, 2013, 33(3): 475-482. |
[5] | 王成勇. 半参数平滑转换回归模型及其级数估计[J]. 数学物理学报, 2012, 32(4): 797-807. |
[6] | 王宏宁, 俞焕然. 基于相依数据的非参数回归函数和尺度函数的联立稳健估计[J]. 数学物理学报, 2010, 30(3): 835-847. |
[7] | 张军舰, 李国英. 上界型拟合优度检验[J]. 数学物理学报, 2010, 30(2): 344-357. |
[8] | 张娟, 崔恒建. 缺失数据下EV模型的调整最小二乘估计[J]. 数学物理学报, 2009, 29(6): 1465-1476. |
[9] | 尹长明, 李永明, 王朋炎. 广义线性模型中极大拟似然估计的强收敛速度[J]. 数学物理学报, 2009, 29(4): 1058-1064. |
[10] | 李莉娜, 高付清. 方向数据核密度估计强一致相合性的收敛速度[J]. 数学物理学报, 2009, 29(3): 707-715. |
[11] | 肖枝洪;刘禄勤. 不完全信息随机截尾广义线性模型的极大似然估计[J]. 数学物理学报, 2008, 28(3): 553-564. |
[12] | 李国亮; 刘禄勤. 误差为鞅差序列的部分线性模型中估计的强相合性[J]. 数学物理学报, 2007, 27(5): 788-801. |
[13] | 夏天; 唐年胜; 王学仁; 张文专. 非线性再生散度随机效应模型的渐近性质[J]. 数学物理学报, 2007, 27(1): 146-154. |
[14] | 丁洁丽;陈希孺. 广义线性回归极大似然估计的强相合性[J]. 数学物理学报, 2006, 26(2): 168-173. |
[15] | 吴群英. 混合线性模型M估计的强相合性[J]. 数学物理学报, 2005, 25(1): 41-46. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 96
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 62
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|