[1] |
Applebaum D. Lévy Processes and Stochastic Calculus. United Kingdom: Cambridge University Press, 2009
|
[2] |
Basawa I, Scott D. Asymptotic Optimal inference for Non-ergodic Models. New York: Springer, 1983
|
[3] |
Bercu B, ProÏa F, Savy N. On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes. Statist Probab Lett, 2014, 85: 36-44
doi: 10.1016/j.spl.2013.11.002
|
[4] |
Bo L, Wang Y, Yang X, Zhang G. Maximum likelihood estimation for reflected Ornstein-Uhlenbeck processes. J Statist Plann Inference, 2011, 141: 588-596
doi: 10.1016/j.jspi.2010.07.001
|
[5] |
Dietz H. Asymptotic behavior of trajectory fitting estimators for certain non-ergodic SDE. Stat Inference Stoch Process, 2001, 4: 249-258
doi: 10.1023/A:1012254332474
|
[6] |
Dietz H, Kutoyants Y. A class of minimum-distance estimators for diffusion processes with ergodic properties. Stat Decis, 1997, 15: 211-227
|
[7] |
Dietz H, Kutoyants Y. Parameter estimation for some non-recurrent solutions of SDE. Stat Decis, 2003, 21: 29-45
|
[8] |
Fama E. Mandelbrot and the stable Paretian hypothesis. J Business, 1963, 36: 420-429
doi: 10.1086/294633
|
[9] |
Hu Y, Long H. Parameter estimation for Ornstein-Uhlenbeck processes driven by $\alpha$-stable Lévy motions. Commun Stoch Anal, 2007, 1: 175-192
|
[10] |
Hu Y, Long H. Least squares estimator for Ornstein-Uhlenbeck processes driven by $\alpha$-stable motions. Stochastic Process Appl, 2009, 119: 2465-2480
doi: 10.1016/j.spa.2008.12.006
|
[11] |
Hu Y, Long H. On the singularity of least squares estimator for mean-reverting $\alpha$-stable motions. Acta Math Sci, 2009, 29B(3): 599-608
|
[12] |
Janicki A, Weron A. Simulation and Chaotic Behavior of $\alpha$-stable Stochastic Processes. New York: Marcel Dekker, 1994
|
[13] |
Jeong H, Tomber B, Albert R, et al. The large-scale organization of metabolic networks. Nature, 2000, 407: 378-382
|
[14] |
Jiang H, Dong X. Parameter estimation for the non-stationary Ornstein-Uhlenbeck process with linear drift. Stat Papers, 2015, 56: 257-268
doi: 10.1007/s00362-014-0580-z
|
[15] |
Kessler M. Estimation of an ergodic diffusion from discrete observations. Scand J Statist, 1997, 24: 211-229
doi: 10.1111/1467-9469.00059
|
[16] |
Kutoyants Y. Statistical Inference for Ergodic Diffusion Processes. Heidelberg: Springer-Verlag, 2004
|
[17] |
Long H. Parameter estimation for a class of stochastic differential equations driven by small stable noises from discrete observations. Acta Math Sci, 2010, 30B(3): 645-663
|
[18] |
Mandelbrot B. The Pareto-Lévy law and the distribution of income. Int Econ Rev, 1960, 1: 79-106
doi: 10.2307/2525289
|
[19] |
Pan Y, Yan L. The least squares estimation for the $\alpha$-stable Ornstein-Uhlenbeck process with constant drift. Methodol Comput Appl Probab, 2019, 21: 1165-1182
doi: 10.1007/s11009-018-9654-z
|
[20] |
Sato K. Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press, 1999
|
[21] |
Shimizu Y. Local asymptotic mixed normality for discretely observed non-recurrent Ornstein-Uhlenbeck processes. Ann Inst Stat Math, 2012, 64: 193-211
doi: 10.1007/s10463-010-0307-4
|
[22] |
Xu W, Wu C, Dong Y, Xiao W. Modeling Chinese stock returns with stable distribution. Math Comput Model, 2011, 54: 610-617
doi: 10.1016/j.mcm.2011.03.004
|
[23] |
Zang Q, Zhang L. Asymptotic behaviour of the trajectory fitting estimator for reflected Ornstein-Uhlenbeck Processes. J Theor Probab, 2019, 32: 183-201
doi: 10.1007/s10959-017-0796-7
|
[24] |
Zang Q, Zhu C. Asymptotic behaviour of parametric estimation for nonstationary reflected Ornstein-Uhlenbeck processes. J Math Anal Appl, 2016, 444: 839-851
doi: 10.1016/j.jmaa.2016.06.067
|
[25] |
Zhang S, Zhang X. A least squares estimator for discretely observed Ornstein-Uhlenbeck processes driven by symmetric $\alpha$-stable motions. Ann Inst Statist Math, 2013, 65: 89-103
doi: 10.1007/s10463-012-0362-0
|
[26] |
Zhang X, Yi H, Shu H. Nonparametric estimation of the trend for stochastic differential equations driven by small $\alpha$-stable noises. Statist Probab Lett, 2019, 151: 8-16
doi: 10.1016/j.spl.2019.03.012
|
[27] |
Zhang X, Yi H, Shu H. Parameter estimation for non-stationary reflected Ornstein-Uhlenbeck processes driven by $\alpha$-stable noises. Statist Probab Lett, 2020, 156: 108617
doi: 10.1016/j.spl.2019.108617
|
[28] |
Zhang X, Yi H, Shu H. Parameter estimation for certain nonstationary processes driven by $\alpha$-stable motions. Comm Statist Theory Methods, 2021, 50: 95-104
doi: 10.1080/03610926.2019.1630436
|
[29] |
Zolotarev V. One-Dimensional Stable Distribution. Providence: American Mathematical Society, 1986
|