数学物理学报 ›› 2023, Vol. 43 ›› Issue (1): 14-26.

• • 上一篇    下一篇

Laplace算子特征值和的精细下界

何跃1,3,*(),阮其华2,3()   

  1. 1南京师范大学数学科学学院数学研究所 南京 210023
    2莆田学院数学系 福建莆田 351100
    3应用数学福建省高校重点实验室(莆田学院) 福建莆田 351100
  • 收稿日期:2022-03-13 修回日期:2022-08-15 出版日期:2023-02-26 发布日期:2023-03-07
  • 通讯作者: *何跃, E-mail: heyue@njnu.edu.cn; heyueyn@163.com
  • 作者简介:阮其华, E-mail: ruanqihua@163.com
  • 基金资助:
    国家自然科学基金(11871278);国家自然科学基金(11971253);应用数学福建省高校重点实验室(莆田学院)开放课题(SX202101)

Refined Lower Bound for Sums of Eigenvalues of the Laplace Operator

He Yue1,3,*(),Ruan Qihua2,3()   

  1. 1Institute of Mathematics, School of Mathematics Sciences, Nanjing Normal University, Nanjing 210023
    2Department of Mathematics, Putian University, Fujian Putian 351100
    3Key Laboratory of Applied Mathematics (Putian University), Fujian Province University, Fujian Putian 351100
  • Received:2022-03-13 Revised:2022-08-15 Online:2023-02-26 Published:2023-03-07
  • Supported by:
    The NSFC(11871278);The NSFC(11971253);Key Laboratory of Applied Mathematics of Fujian Province University(Putian University)(SX202101)

摘要:

该文研究了$\Bbb R ^n$中Laplace算子在有界域$\Omega$上的Dirichlet 特征值和的下界.众所周知:第$k$个Dirichlet特征值$\lambda_k(\Omega)$服从Weyl渐近公式,即 $ \lambda_k(\Omega)\sim\frac{4\pi^2}{[\omega_nV(\Omega)]^\frac{2}{n}}k^\frac{2}{n} \qquad\hbox{当}\,\,k\rightarrow\infty\,\,\hbox{时}, $ 其中$\omega_n$$V(\Omega)$分别为是$\Bbb R ^n$$n$维单位球的体积和$\Omega$的体积.根据上述公式,Pólya猜测 $ \lambda_k(\Omega)\geq\frac{4\pi^2}{[\omega_nV(\Omega)]^\frac{2}{n}}k^\frac{2}{n}, \quad\forall\,\,k\in{\Bbb N}. $ 这就是著名的Pólya猜想.对这一问题的研究由来已久,已有很多的工作.特别是,近几十年来最显著的成就之一是由Berezin[4], 以及李伟光和丘成桐[3] 分别独立取得的.他们部分解决了Pólya猜想,只是多了一个因子$n/(n+2)$.后来, Melas[7] 改进了Berezin-Li-Yau的估计,在不等式右边增加了一个正的$k$阶项. 该文采用与 Melas几乎相同的论证,进一步完善了 Melas 的估计.

关键词: (分数阶)Laplace算子, Dirichlet特征值, 高阶特征值, Weyl渐近公式, Pólya猜想, Berezin-Li-Yau不等式, 惯性矩

Abstract:

In this paper, we study lower bounds for higher eigenvalues of the Dirichlet eigenvalue problem of the Laplacian on a bounded domain $\Omega$ in $\Bbb R ^n$. It is well known that the $k$-th Dirichlet eigenvalue $\lambda_k(\Omega)$ obeys the Weyl asymptotic formula, that is, $ \lambda_k(\Omega)\sim\frac{4\pi^2}{[\omega_nV(\Omega)]^\frac{2}{n}}k^\frac{2}{n} \qquad\hbox{as}\quad k\rightarrow\infty, $ where $\omega_n$ and $V(\Omega)$ are the volume of $n$-dimensional unit ball in $\Bbb R ^n$ and the volume of $\Omega$ respectively. In view of the above formula, Pólya conjectured that $ \lambda_k(\Omega)\geq\frac{4\pi^2}{[\omega_nV(\Omega)]^\frac{2}{n}}k^\frac{2}{n} \qquad\hbox{for}\quad k\in{\Bbb N}. $ This is the well-known conjecture of Pólya. Studies on this topic have a long history with much work. In particular, one of the more remarkable achievements in recent tens years has been achieved independently by Berezin[2] and Li and Yau[4], respectively. They solved partially the conjecture of Pólya with a slight difference by a factor $n/(n+2)$. Later, Melas[7] improved Berezin-Li-Yau's estimate by adding an additional positive term of the order of $k$ to the right side. Here, following almost the same argument as Melas, we further refine Melas's estimate.

Key words: The (fractional) Laplace operator, The Dirichlet eigenvalue, Higher eigenvalues, The Weyl asymptotic formula, Conjecture of Pólya, The Berezin-Li-Yau inequality, The moment of inertia

中图分类号: 

  • O186.1