[1] |
Kundu A. Landau-Lifshitz and higherorder nonlinear systems gauge generated from nonlinear Schrödinger type equations. J Math Phys, 1984, 25(12): 3433-3438
doi: 10.1063/1.526113
|
[2] |
Kivshar Y S, Agrawal G P. Optical Solitons:From Fibers to Photonic Crystals. New York: Academic, 2003
|
[3] |
Dysthe K B. Note on the modification of the nonlinear Schödinger equation for application to deep water waves. Proc R Soc Lond A, 1979, 369(1736): 105-114
doi: 10.1098/rspa.1979.0154
|
[4] |
Chan H N, Chow K W, Kedziora D J. Rogue wave modes for a derivative nonlinear Schrödinger model. Phys Rev E, 2014, 89(3): 032914
doi: 10.1103/PhysRevE.89.032914
|
[5] |
Hu B B, Zhang L, Zhang N. On the Riemann-Hilbert problem for the mixed Chen-Lee-Liu derivative nonlinear Schrödinger equation. J Comput Appl Math, 2021, 390: 113393
doi: 10.1016/j.cam.2021.113393
|
[6] |
Zhang Y S, Guo L J, Chabchoub A. Higher-order rogue wave dynamics for a derivative nonlinear Schrödinger equation. https://arxiv.org/pdf/1409.7923v2.pdf
|
[7] |
Fang F, Hu B B, Zhang L. Riemann-Hilbert method and $N$-soliton solutions for the mixed Chen-Lee-Liu derivative nonlinear Schrödinger equation. https://arxiv.org/pdf/2004.03193.pdf
|
[8] |
Zhao Y, Fan E G. N-soliton solution for a higher-order Chen-Lee-Liu equation with nonzero boundary conditions. Modern Phys Lett B, 2020, 34(4): 2050054
doi: 10.1142/S0217984920500542
|
[9] |
Biondini G, Kovačič G. Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions. J Math Phys, 2014, 55(3): 031506
doi: 10.1063/1.4868483
|
[10] |
Pichler M, Biondini G. On the focusing non-linear Schrödinger equation with non-zero boundary conditions and double poles. IMA J Appl Math, 2017, 82(1): 131-151
doi: 10.1093/imamat/hxw009
|
[11] |
Wen L L, Zhang N, Fan E G. $N$-soliton solution of the Kundu-Type equation via Riemann-Hilbert approach, Acta Mathematica Scientia, 2020, 40B(1): 113-126
|
[12] |
Zhang B, Fan E G. Riemann-Hilbert approach for a Schrödinger-type equation with nonzero boundary conditions. Modern Phys Lett B, 2021, 35(12): 2150208
doi: 10.1142/S0217984921502080
|
[13] |
Zhang G Q, Yan Z Z. The derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions: Inverse scattering transforms and N-double-pole solutions. J Nonlinear Sci, 2020, 30(2): 3089-3127
doi: 10.1007/s00332-020-09645-6
|
[14] |
Zhang G Q, Yan Z Z. Focusing and defocusing Hirota equations with non-zero boundary conditions: Inverse scattering transforms and soliton solutions. Commun Nonlinear Sci Numer Simulat, 2020, 80: 104927
doi: 10.1016/j.cnsns.2019.104927
|
[15] |
Zhang G Q, Yan Z Z. Focusing and defocusing mKdV equations with nonzero boundary conditions: Inverse scattering transforms and soliton interactions. Physica D, 2020, 410: 132521
doi: 10.1016/j.physd.2020.132521
|
[16] |
Clarkson P A, Cosgrove C M. Painlevé analysis of the non-linear Schrödinger family of equations. J Phys A: Math Gen, 1987, 20(8): 2003-2024
doi: 10.1088/0305-4470/20/8/020
|
[17] |
Faddeev L D, Takhtajan L A. Hamiltonian Methods in the Theory of Solitons. Berlin: Springer, 1987
|