数学物理学报 ›› 2023, Vol. 43 ›› Issue (1): 181-202.

• • 上一篇    下一篇

Monge-Ampère方程边界爆破解的最优估计和不存在性

冯美强1,*(),张学梅2()   

  1. 1北京信息科技大学理学院 北京 100192
    2华北电力大学数理学院 北京 102206
  • 收稿日期:2021-11-24 修回日期:2022-04-24 出版日期:2023-02-26 发布日期:2023-03-07
  • 通讯作者: *冯美强, E-mail: meiqiangfeng@sina.com
  • 作者简介:张学梅, E-mail: zxm74@sina.com
  • 基金资助:
    北京市自然科学基金(1212003)

On the Optimal Global Estimates of Boundary Blow-up Solutions to the Monge-Ampère Equation

Feng Meiqiang1,*(),Zhang Xuemei2()   

  1. 1School of Applied Science, Beijing Information Science & Technology University, Beijing 100192
    2School of Mathematics and Physics, North China Electric Power University, Beijing 102206
  • Received:2021-11-24 Revised:2022-04-24 Online:2023-02-26 Published:2023-03-07
  • Supported by:
    Beijing Natural Science Foundation of China(1212003)

摘要:

该文致力于研究如下Monge-Ampère方程边界爆破解的最优估计和严格凸解的不存在性 M[u](x)=K(x)f(u), xΩ,u(x)+  当  dist(x,Ω)0. 这里 M[u]=det(uxixj) 是 Monge-Ampère 算子, ΩRN(N2) 中的光滑有界严格凸区域. 文中不仅得到了K(x)f(u) 的各种条件之间的关系, 还通过和已有文献中相关结果的比较明确了条件和估计之间的关系. 并且, 在 Ω 是一般区域的情况下给出了严格凸解不存在的结果, 而这在以往文献中尚未提及.

关键词: Monge-Ampère方程, 边界爆破解, 最优估计, 严格凸解, 不存在性

Abstract:

This paper is dedicated to studying the optimal global estimates and nonexistence of strictly convex solutions to the boundary blow-up Monge-Ampère problem M[u](x)=K(x)f(u) for xΩ,u(x)+ as dist(x,Ω)0. Here M[u]=det(uxixj) is the Monge-Ampère operator, and Ω denotes a smooth, bounded, strictly convex domain in RN(N2). The interesting features in our proof are that we not only obtain the relations among various conditions imposed on K(x) and f(u), but make comparison of some results of global estimates in previous literatures and make clear what conditions lead to what estimations. Moreover, when Ω is a general region, we give some nonexistence results which is rarely discussed in previous literatures.

Key words: Monge-Ampère equation, Boundary blow-up, Global estimates, Strictly convex solution, Nonexistence

中图分类号: 

  • O177.91