[1] |
D'ambrosio L, Lucente S. Nonlinear Liouville theorems for Grushin and Tricomi operators. J Differential Equations, 2003, 193(2): 511-541
doi: 10.1016/S0022-0396(03)00138-4
|
[2] |
Yagdjian K. A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain. J Differential Equations, 2004, 206(1): 227-252
doi: 10.1016/j.jde.2004.07.028
|
[3] |
Yagdjian K. Global existence for the $n$-dimensional semilinear Tricomi-type equations. Comm Partial Differential Equations, 2006, 31(6): 907-944
doi: 10.1080/03605300500361511
|
[4] |
Sun Y Q. Sharp lifespan estimates for subcritical generalized semilinear Tricomi equations. Math Meth Appl Sci, 2021, 44(13): 10239-10251
doi: 10.1002/mma.7402
|
[5] |
Lin J Y, Tu Z H. Lifespan of semilinear generalized Tricomi equation with Strauss type exponent. Preprint, arXiv:1903.11351v2(2019)
|
[6] |
He D Y, Witt I, Yin H C. On the global solution problem for semilinear generalized Tricomi equations, I. Calc Var, 2017, 56(2): Article 21
doi: 10.1007/s00526-017-1125-9
|
[7] |
He D Y, Witt I, Yin H C. On semilinear Tricomi equations in one space dimension. Preprint, arXiv:1810. 12748(2018)
|
[8] |
He D Y, Witt I, Yin H C. On semilinear Tricomi equations with critical exponents or in two space dimensions. J Differential Equations, 2017, 263(12): 8102-8137
doi: 10.1016/j.jde.2017.08.033
|
[9] |
He D Y, Witt I, Yin H C. On the Strauss index of semilinear Tricomi equation. Commun Pure Appl Anal, 2020, 19(10): 4817-4838
|
[10] |
Chen W H, Lucente S, Palmieri A. Nonexistence of global solutions for generalized Tricomi equations with combined nonlinearity. Nonlinear Anal Real World Appl, 2021, 61: 103354
doi: 10.1016/j.nonrwa.2021.103354
|
[11] |
Palmieri A. Blow-up results for semilinear damped wave equations in Einstein-de Sitter spacetime. Z Angew Math Phys, 2021, 72: Article 64
doi: 10.1007/s00033-021-01494-x
|
[12] |
Palmieri A. On the the critical exponent for the semilinear Euler-Poisson-Darboux-Tricomi equation with power nonlinearity. Preprint, arXiv:2105.09879(2021)
|
[13] |
Chen W H. Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms. Nonlinear Anal, 2021, 202: 112160
doi: 10.1016/j.na.2020.112160
|
[14] |
Chen W H, Reissig M. Blow-up of solutions to Nakao's problem via an iteration argument. J Differential Equations, 2021, 275: 733-756
doi: 10.1016/j.jde.2020.11.009
|
[15] |
Chen W H, Palmieri A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case. Discrete Contin Dyn Syst, 2020, 40: 5513-5540
doi: 10.3934/dcds.2020236
|
[16] |
Chen W H, Palmieri A. Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part. Z Angew Math Phys, 2019, 70(2): Article 67
doi: 10.1007/s00033-019-1112-4
|
[17] |
Chen W H, Ikehata R. The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case. J Differential Equations, 2021, 292: 176-219
doi: 10.1016/j.jde.2021.05.011
|
[18] |
欧阳柏平, 肖胜中. 具有非线性记忆项的半线性双波动方程解的全局非存在性. 数学物理学报, 2021, 41A(5): 1372-1381
|
|
Ouyang B P, Xiao S Z. Nonexistence of global solutions for a semilinear Double-Wave equation with a nonlinear memory term. Acta Mathematica Scientia, 2021, 41A(5): 1372-1381
|
[19] |
Lai N A, Takamura H, Wakasa K. Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent. J Differential Equations, 2017, 263: 5377-5394
doi: 10.1016/j.jde.2017.06.017
|
[20] |
Palmieri A, Takamura A. Blow-up for a weekly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities. Nonlinear Anal, 2019, 187: 467-492
doi: 10.1016/j.na.2019.06.016
|
[21] |
Yordanov B T, Zhang Q S. Finite time blow up for critical wave equations in high dimensions. J Funct Anal, 2006, 231(2): 361-374
doi: 10.1016/j.jfa.2005.03.012
|
[22] |
Lai N A, Takamura H. Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey's conjecture. Differ Integral Equ, 2019, 32: 37-48
|
[23] |
Olver F W J, Lozier D W, Boisvert R F, Clark C W. NIST Handbook of Mathematical Functions. New York: Cambridge University Press, 2010
|
[24] |
Palmieri A, Reissig M. A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass. J Differ Equ, 2019, 266(2/3): 1176-1220
doi: 10.1016/j.jde.2018.07.061
|