数学物理学报 ›› 2023, Vol. 43 ›› Issue (1): 169-180.
收稿日期:
2021-10-26
修回日期:
2022-08-25
出版日期:
2023-02-26
发布日期:
2023-03-07
作者简介:
欧阳柏平, E-mail: 基金资助:
Received:
2021-10-26
Revised:
2022-08-25
Online:
2023-02-26
Published:
2023-03-07
Supported by:
摘要:
研究了具有非线性记忆项的Euler-Poisson-Darboux-Tricomi方程在次临界情况下解的爆破现象. 利用泛函分析方法结合修正的Bessel方程推出了其柯西问题解的迭代框架和第一下界, 然后通过迭代技巧, 获得了其解的全局非存在性以及解的生命跨度上界估计.
中图分类号:
欧阳柏平. 非线性记忆项的Euler-Poisson-Darboux-Tricomi方程解的爆破[J]. 数学物理学报, 2023, 43(1): 169-180.
Ouyang Baiping. Blow-up of Solutions to the Euler-Poisson-Darboux-Tricomi Equation with a Nonlinear Memory Term[J]. Acta mathematica scientia,Series A, 2023, 43(1): 169-180.
[1] |
D'ambrosio L, Lucente S. Nonlinear Liouville theorems for Grushin and Tricomi operators. J Differential Equations, 2003, 193(2): 511-541
doi: 10.1016/S0022-0396(03)00138-4 |
[2] |
Yagdjian K. A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain. J Differential Equations, 2004, 206(1): 227-252
doi: 10.1016/j.jde.2004.07.028 |
[3] |
Yagdjian K. Global existence for the n-dimensional semilinear Tricomi-type equations. Comm Partial Differential Equations, 2006, 31(6): 907-944
doi: 10.1080/03605300500361511 |
[4] |
Sun Y Q. Sharp lifespan estimates for subcritical generalized semilinear Tricomi equations. Math Meth Appl Sci, 2021, 44(13): 10239-10251
doi: 10.1002/mma.7402 |
[5] | Lin J Y, Tu Z H. Lifespan of semilinear generalized Tricomi equation with Strauss type exponent. Preprint, arXiv:1903.11351v2(2019) |
[6] |
He D Y, Witt I, Yin H C. On the global solution problem for semilinear generalized Tricomi equations, I. Calc Var, 2017, 56(2): Article 21
doi: 10.1007/s00526-017-1125-9 |
[7] | He D Y, Witt I, Yin H C. On semilinear Tricomi equations in one space dimension. Preprint, arXiv:1810. 12748(2018) |
[8] |
He D Y, Witt I, Yin H C. On semilinear Tricomi equations with critical exponents or in two space dimensions. J Differential Equations, 2017, 263(12): 8102-8137
doi: 10.1016/j.jde.2017.08.033 |
[9] | He D Y, Witt I, Yin H C. On the Strauss index of semilinear Tricomi equation. Commun Pure Appl Anal, 2020, 19(10): 4817-4838 |
[10] |
Chen W H, Lucente S, Palmieri A. Nonexistence of global solutions for generalized Tricomi equations with combined nonlinearity. Nonlinear Anal Real World Appl, 2021, 61: 103354
doi: 10.1016/j.nonrwa.2021.103354 |
[11] |
Palmieri A. Blow-up results for semilinear damped wave equations in Einstein-de Sitter spacetime. Z Angew Math Phys, 2021, 72: Article 64
doi: 10.1007/s00033-021-01494-x |
[12] | Palmieri A. On the the critical exponent for the semilinear Euler-Poisson-Darboux-Tricomi equation with power nonlinearity. Preprint, arXiv:2105.09879(2021) |
[13] |
Chen W H. Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms. Nonlinear Anal, 2021, 202: 112160
doi: 10.1016/j.na.2020.112160 |
[14] |
Chen W H, Reissig M. Blow-up of solutions to Nakao's problem via an iteration argument. J Differential Equations, 2021, 275: 733-756
doi: 10.1016/j.jde.2020.11.009 |
[15] |
Chen W H, Palmieri A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case. Discrete Contin Dyn Syst, 2020, 40: 5513-5540
doi: 10.3934/dcds.2020236 |
[16] |
Chen W H, Palmieri A. Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part. Z Angew Math Phys, 2019, 70(2): Article 67
doi: 10.1007/s00033-019-1112-4 |
[17] |
Chen W H, Ikehata R. The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case. J Differential Equations, 2021, 292: 176-219
doi: 10.1016/j.jde.2021.05.011 |
[18] | 欧阳柏平, 肖胜中. 具有非线性记忆项的半线性双波动方程解的全局非存在性. 数学物理学报, 2021, 41A(5): 1372-1381 |
Ouyang B P, Xiao S Z. Nonexistence of global solutions for a semilinear Double-Wave equation with a nonlinear memory term. Acta Mathematica Scientia, 2021, 41A(5): 1372-1381 | |
[19] |
Lai N A, Takamura H, Wakasa K. Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent. J Differential Equations, 2017, 263: 5377-5394
doi: 10.1016/j.jde.2017.06.017 |
[20] |
Palmieri A, Takamura A. Blow-up for a weekly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities. Nonlinear Anal, 2019, 187: 467-492
doi: 10.1016/j.na.2019.06.016 |
[21] |
Yordanov B T, Zhang Q S. Finite time blow up for critical wave equations in high dimensions. J Funct Anal, 2006, 231(2): 361-374
doi: 10.1016/j.jfa.2005.03.012 |
[22] | Lai N A, Takamura H. Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey's conjecture. Differ Integral Equ, 2019, 32: 37-48 |
[23] | Olver F W J, Lozier D W, Boisvert R F, Clark C W. NIST Handbook of Mathematical Functions. New York: Cambridge University Press, 2010 |
[24] |
Palmieri A, Reissig M. A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass. J Differ Equ, 2019, 266(2/3): 1176-1220
doi: 10.1016/j.jde.2018.07.061 |
[1] | 冯美强, 张学梅. Monge-Ampère方程边界爆破解的最优估计和不存在性[J]. 数学物理学报, 2023, 43(1): 181-202. |
[2] | 鲁呵倩,张正策. 带非线性梯度项的p-Laplacian抛物方程的临界指标[J]. 数学物理学报, 2022, 42(5): 1381-1397. |
[3] | 万雅琪,陈晓莉. 压力项属于Triebel-Lizorkin空间的三维不可压Navier-Stokes方程的正则性准则[J]. 数学物理学报, 2022, 42(5): 1473-1481. |
[4] | 邱臻,王光武. 量子Navier-Stokes-Landau-Lifshitz方程光滑解的爆破问题[J]. 数学物理学报, 2022, 42(4): 1074-1088. |
[5] | 何春蕾,刘子慧. 一类双曲平均曲率流的对称与整体解[J]. 数学物理学报, 2022, 42(4): 1089-1102. |
[6] | 杨连峰,曾小雨. 拟相对论薛定谔方程基态解的存在性与爆破行为[J]. 数学物理学报, 2022, 42(1): 165-175. |
[7] | 杜玉阁,田书英. 一类带对数非线性项的抛物方程解的存在性和爆破[J]. 数学物理学报, 2021, 41(6): 1816-1829. |
[8] | 合敬然,郭合林,王文清. 一类带强制位势的p-Laplace特征值问题[J]. 数学物理学报, 2021, 41(5): 1323-1332. |
[9] | 杨慧,韩玉柱. 一类抛物型Kirchhoff方程解的爆破性质[J]. 数学物理学报, 2021, 41(5): 1333-1346. |
[10] | 欧阳柏平,肖胜中. 具有非线性记忆项的半线性双波动方程解的全局非存在性[J]. 数学物理学报, 2021, 41(5): 1372-1381. |
[11] | 陈明涛,苏文火,臧爱彬. 带真空无磁扩散不可压磁流体方程柯西问题的局部适定性[J]. 数学物理学报, 2021, 41(1): 100-125. |
[12] | 陈翔英,陈国旺. 源于非线性层晶格模型的一耦合Boussinesq型广义方程组的Cauchy问题[J]. 数学物理学报, 2020, 40(6): 1552-1567. |
[13] | 肖常旺,郭飞. 一类半线性波动方程的适定性[J]. 数学物理学报, 2020, 40(6): 1568-1589. |
[14] | 黄守军,王娟. N维外区域中带变系数非线性项的半线性波动方程解的爆破[J]. 数学物理学报, 2020, 40(5): 1259-1268. |
[15] | 田守富. 一个弱耗散修正的二分量Dullin-Gottwald-Holm系统解的行为研究[J]. 数学物理学报, 2020, 40(5): 1204-1223. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 116
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 77
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|