数学物理学报 ›› 2023, Vol. 43 ›› Issue (1): 274-290.
收稿日期:
2022-05-23
修回日期:
2022-09-22
出版日期:
2023-02-26
发布日期:
2023-03-07
通讯作者:
*夏福全, E-mail: 作者简介:
段洁, E-mail: Received:
2022-05-23
Revised:
2022-09-22
Online:
2023-02-26
Published:
2023-03-07
摘要:
该文在Hilbert空间中提出一种新Tseng型外梯度算法, 用以求解一致连续伪单调映射的变分不等式问题与具有半封闭性拟非扩张映射的不动点问题的公共解. 在一定的假设条件下, 证明了算法所生成的序列的强收敛性. 文章最后对算法进行数值实验, 验证了算法的有效性.
中图分类号:
段洁, 夏福全. 求解变分不等式与不动点问题公共解的新Tseng型外梯度算法[J]. 数学物理学报, 2023, 43(1): 274-290.
Duan Jie, Xia Fuquan. A New Tseng-like Extragradient Algorithm for Common Solutions of Variational Inequalities and Fixed Point Problems[J]. Acta mathematica scientia,Series A, 2023, 43(1): 274-290.
[1] | Goldstein A A. Convex programming in Hilbert space. Bull New Ser Am Math Soc, 1964, 70(5): 109-112 |
[2] | Korpelevich G M. The extragradient method for finding saddle points and other problems. Ekonomikai Matematicheskie Metody, 1976, 12: 747-756 |
[3] |
Tseng P. A modified forward-backward splitting method for maximal monotone mapping. SIAM J Control Optim, 2000, 38(2): 431-446
doi: 10.1137/S0363012998338806 |
[4] |
Cai G, Yekini S, Iyiola O S. Inertial Tseng's extragradient method for solving variational inequality problems of pseudo-monotone and non-lipschitz operators. J Ind Manag Optim, 2021, 1: 1-30
doi: 10.3934/jimo.2005.1.1 |
[5] |
Moudafi A. Viscosity approximation methods for fixed-points problems. J Math Anal Appl, 2000, 241: 46-55
doi: 10.1006/jmaa.1999.6615 |
[6] | Yamada I. The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings//Butnariu D, Censor Y, Reich S, Eds. Inherently Parallel Algorithms in Feasibility and Optimization and Their Application. New York: Elservier, 2001: 473-504 |
[7] | Halpern B. Fixed points of nonexpanding maps. Bull Amer Math, 1967, 73: 957-961 |
[8] |
Ishikawa S. Fixed points by a new iteration method. Proc Amer Math Soc, 1974, 44: 147-150
doi: 10.1090/S0002-9939-1974-0336469-5 |
[9] |
Marino G, Xu H K. A general iterative method for nonexpansive mappings in Hilbert spaces. J Math Anal Appl, 2006, 318: 43-52
doi: 10.1016/j.jmaa.2005.05.028 |
[10] |
Tian M. A general iterative method for nonexpansive mappings in Hilbert spaces. Nonlinear Anal, 2010, 73(3): 689-694
doi: 10.1016/j.na.2010.03.058 |
[11] |
Ke Y F, Ma C F. The generalized viscosity implicit rules of nonexpansive mappings in Hilbert spaces. Fixed Point Theory Appl, 2015, 2015: 190
doi: 10.1186/s13663-015-0439-6 |
[12] |
Nadezhkina N, Takahashi W. Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J Optim Theory Appl, 2006, 128(1): 191-201
doi: 10.1007/s10957-005-7564-z |
[13] |
Thong D V, Hieu D V. Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems. Numer Algor, 2019, 80(4): 1283-1307
doi: 10.1007/s11075-018-0527-x |
[14] |
Ceng L C, Shang M J. Hybrid inertial subgradient extragradient methods for variational inequalities and fixed point problems involving asymptotically nonexpansive mappings. Optimization, 2021, 70(4): 715-740
doi: 10.1080/02331934.2019.1647203 |
[15] | Goebel K, Reich S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. New York: Marcel Dekker, 1984 |
[16] | Cottle R W, Yao J C. Pseudo-monotone complementarity problems in Hilbert space. J Optim Theory Appl, 1992, 72(2): 281-295 |
[17] |
Xu H K. Iterative algorithms for nonlinear operators. J London Math Soc, 2002, 66: 240-256
doi: 10.1112/S0024610702003332 |
[18] |
Xu H K, Kim T H. Convergence of hybrid steepest-descent methods for variational inequalities. J Optim Theory Appl, 2003, 119(1): 185-201
doi: 10.1023/B:JOTA.0000005048.79379.b6 |
[19] | Glowinski R, Lions J L, Trémolières R. Numerical Analysis of Variational Inequalities. Amsterdam: Elsevier, 1981 |
[20] |
Iusem A, Otero R G. Inexact versions of proximal point and augmented lagrangian algorithms in Banach spaces. Numer Funct Anal Optim, 2001, 22: 609-640
doi: 10.1081/NFA-100105310 |
[21] |
Denisov S V, Semenov V V, Chabak L M. Convergence of the modified extragradient method for variational inequalities with non-lipschitz operators. Cybern Syst Anal, 2015, 51: 757-765
doi: 10.1007/s10559-015-9768-z |
[22] |
He B S, Liao L Z. Improvements of some projection methods for monotone nonlinear variational inequalities. J Optim Theory Appl, 2002, 112(1): 111-128
doi: 10.1023/A:1013096613105 |
[23] | Sun D F. A projection and contraction method for the nonlinear complementarity problem and it's extensions. Math Numer Sinica, 1994, 16(3): 183-194 |
[1] | 杨蓝翔, 陈艺, 叶明露. 一类拟单调变分不等式的惯性投影算法[J]. 数学物理学报, 2023, 43(2): 593-603. |
[2] | 夏平静, 蔡钢. Hilbert 空间中变分不等式问题的自适应粘性算法[J]. 数学物理学报, 2023, 43(2): 581-592. |
[3] | 施翠云,宾茂君. Banach空间中微分变分不等式系统的Bang-Bang准则[J]. 数学物理学报, 2022, 42(6): 1653-1670. |
[4] | 刘丽平,彭建文. 求解变分不等式和不动点问题的公共元的修正次梯度外梯度算法[J]. 数学物理学报, 2022, 42(5): 1517-1536. |
[5] | 杨静,龙宪军. 关于伪单调变分不等式与不动点问题的新投影算法[J]. 数学物理学报, 2022, 42(3): 904-919. |
[6] | 贺月红,龙宪军. 求解伪单调变分不等式问题的惯性收缩投影算法[J]. 数学物理学报, 2021, 41(6): 1897-1911. |
[7] | 万升联. 解变分不等式的一种二次投影算法[J]. 数学物理学报, 2021, 41(1): 237-244. |
[8] | 马国栋. 一般约束极大极小优化问题一个强收敛的广义梯度投影算法[J]. 数学物理学报, 2020, 40(3): 641-649. |
[9] | 蔡钢. Hilbert空间中关于变分不等式问题和不动点问题的粘性隐式中点算法[J]. 数学物理学报, 2020, 40(2): 395-407. |
[10] | 胡雨贤. 求解变分不等式的一种双投影算法[J]. 数学物理学报, 2019, 39(6): 1492-1498. |
[11] | 丘小玲,贾文生. 有限理性下变分不等式的逼近定理[J]. 数学物理学报, 2019, 39(4): 730-737. |
[12] | 罗雪萍, 崔梦天. 自反巴拿赫空间中方向扰动的广义混合变分不等式的可解性[J]. 数学物理学报, 2018, 38(6): 1144-1152. |
[13] | 张石生, 刘振海, 温庆丰, 唐金芳. 与渐进非扩张半群不动点问题有关的分裂变分包含问题及其对最优化问题的应用[J]. 数学物理学报, 2018, 38(2): 231-243. |
[14] | 李茹, 余国林, 刘伟, 刘三阳. 一类广义不变凸函数和向量变分不等式[J]. 数学物理学报, 2017, 37(6): 1029-1039. |
[15] | 蔡钢, Yekini Shehu. q-一致光滑、一致凸Banach空间中关于变分不等式问题和严格伪压缩映射的不动点问题的粘性迭代算法[J]. 数学物理学报, 2016, 36(4): 623-638. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 104
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 72
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|