该文, 使用变分方法, 研究了一类如下双相问题正解的存在性 $ \left\{ \begin{array}{ll} -{\rm div}(|\nabla u(x)|^{p-2}\nabla u(x)+a(x)|\nabla u(x)|^{q-2}\nabla u(x))\\ =\lambda V_1(x)|u(x)|^{\alpha-2}u(x) -\mu V_2(x)|u(x)|^{\beta-2}u(x), &x\in\Omega, \\ u(x)=0, &x\in\partial \Omega, \end{array} \right. $ 其中$N\geq 2$, $1<p<q<N$, $\alpha,\beta,\lambda,\mu$是正常数, $V_1\in L^{s_1}(\Omega)$, $V_2\in L^{s_2}(\Omega)$是权函数且$V_1$允许变号的, $V_2$是非负的.