数学物理学报 ›› 2022, Vol. 42 ›› Issue (5): 1360-1380.
收稿日期:
2022-01-22
出版日期:
2022-10-26
发布日期:
2022-09-30
通讯作者:
冯美强
E-mail:18810392077@163.com;meiqiangfeng@sina.com
作者简介:
邓楠, E-mail: 基金资助:
Received:
2022-01-22
Online:
2022-10-26
Published:
2022-09-30
Contact:
Meiqiang Feng
E-mail:18810392077@163.com;meiqiangfeng@sina.com
Supported by:
摘要:
应用拓扑度理论和凸算子理论, 该文讨论了一类电报方程正双周期解的存在性、唯一性和多重性, 以及电报方程正双周期解的渐近性.
中图分类号:
邓楠,冯美强. 电报方程的正双周期解: 存在性、唯一性、多重性和渐近性[J]. 数学物理学报, 2022, 42(5): 1360-1380.
Nan Deng,Meiqiang Feng. Positive Doubly Periodic Solutions To Telegraph Equations: Existence, Uniqueness, Multiplicity and Asymptotic Behavior[J]. Acta mathematica scientia,Series A, 2022, 42(5): 1360-1380.
1 | Roussy G , Pearcy J A . Foundations and Industrial Applications of Microwaves and Radio Frequency Fields. New York: Wiley, 1995 |
2 | Barbu V . Nonlinear boundary value problems for a class of hyperbolic systems. Rev Roum Math Pures Appl, 1977, 22, 155- 168 |
3 |
Deng N , Feng M . New results of positive doubly periodic solutions to telegraph equations. Electron Res Arch, 2022, 30, 1104- 1125
doi: 10.3934/era.2022059 |
4 |
Li Y . Positive doubly periodic solutions of nonlinear telegraph equations. Nonlinear Anal, 2003, 55, 245- 254
doi: 10.1016/S0362-546X(03)00227-X |
5 |
Wang F , An Y . Existence and multiplicity results of positive doubly periodic solutions for nonlinear telegraph system. J Math Anal Appl, 2009, 349, 30- 42
doi: 10.1016/j.jmaa.2008.08.003 |
6 |
Wang F , An Y . Doubly periodic solutions to a coupled telegraph system. Nonlinear Anal, 2012, 75, 1887- 1894
doi: 10.1016/j.na.2011.09.039 |
7 |
Li Y . Maximum principles and the method of upper and lower solutions for time-periodic problems of the telegraph equations. J Math Anal Appl, 2007, 327, 997- 1009
doi: 10.1016/j.jmaa.2006.04.066 |
8 |
Ortega R , Robles-Pérez A M . A maximum principle for periodic solutions of the telegraph equations. J Math Anal Appl, 1998, 221, 625- 651
doi: 10.1006/jmaa.1998.5921 |
9 |
Mawhin J , Ortega R , Robles-Pérez A M . Maximum principles for bounded solutions of the telegraph equation in space dimensions two and three and applications. J Differential Equations, 2005, 208, 42- 63
doi: 10.1016/j.jde.2003.11.003 |
10 |
Mawhin J , Ortega R , Robles-Pérez A M . A maximum principle for bounded solutions of the telegraph equation in space dimension three. C R Acad Sci Paris Ser I, 2002, 334, 1089- 1094
doi: 10.1016/S1631-073X(02)02406-8 |
11 |
Mawhin J , Ortega R , Robles-Pérez A M . A maximum principle for bounded solutions of the telegraph equations and applications to nonlinear forcings. J Math Anal Appl, 2000, 251, 695- 709
doi: 10.1006/jmaa.2000.7038 |
12 |
Gilding B H , Kersner R . Wavefront solutions of a nonlinear telegraph equation. J Differential Equations, 2013, 254, 599- 636
doi: 10.1016/j.jde.2012.09.007 |
13 |
Hilbert D . Über die gerade Linie als küzeste Verbindung zweier Punkte. Math Ann, 1895, 46, 91- 96
doi: 10.1007/BF02096204 |
14 | Birkhoff G . Extensions of Jentzch's theorem. Trans Amer Math Soc, 1957, 85, 219- 227 |
15 |
Bushell P J . Hilbert's metric and positive contraction mappings in a Banach space. Arch Rational Mech Anal, 1973, 52, 330- 338
doi: 10.1007/BF00247467 |
16 | Feng M . Convex solutions of Monge-Ampère equations and systems: Existence, uniqueness and asymptotic behavior. Adv Nonlinear Anal, 2021, 10, 371- 399 |
17 |
Feng M , Zhang X . On a ![]() doi: 10.1016/j.na.2019.111601 |
18 |
Zhang X , Feng M . The existence and asymptotic behavior of boundary blow-up solutions to the ![]() doi: 10.1016/j.jde.2019.05.004 |
19 | Zhang X , Feng M . Boundary blow-up solutions to the Monge-Ampère equation: Sharp conditions and asymptotic behavior. Adv Nonlinear Anal, 2020, 9, 729- 744 |
20 |
Aviles P . On isolated singularities in some nonlinear partial differential equations. Indiana Univ Math J, 1983, 32, 773- 791
doi: 10.1512/iumj.1983.32.32051 |
21 |
Gidas B , Spruck J . Global and local behavior of positive solutions of nonlinear elliptic equations. Comm Pure Appl Math, 1981, 34, 525- 598
doi: 10.1002/cpa.3160340406 |
22 |
Amann H . Fixed point equations and nonlinear eigenvalue problems in order Banach spaces. SIAM Rev, 1976, 18, 620- 709
doi: 10.1137/1018114 |
23 | Guo D , Lakshmikantham V . Nonlinear Problems in Abstract Cones. New York: Academic Press, 1988 |
24 | 郭大钧. 非线性泛函分析. 山东: 山东科学技术出版社, 1985 |
Guo D J . Nonlinear Functional Analysis. Shandong: Shandong Science and Technology Press, 1985 | |
25 | Hardy G H , Littlewood J E , Pólya G . Inequalities. Second Edition. New York: Cambridge University Press, 1952 |
[1] | 肖翔宇,蒲志林. Cahn-Hilliard-Brinkman系统的全局吸引子[J]. 数学物理学报, 2022, 42(4): 1027-1040. |
[2] | 高天玲,夏莉,周鸣君,张园园. 具非定常数初值的全变差方程解的渐近性[J]. 数学物理学报, 2022, 42(1): 157-164. |
[3] | 张金国,杨登允. 含Hardy型势的临界Grushin算子方程解的存在性和渐近估计[J]. 数学物理学报, 2021, 41(4): 997-1012. |
[4] | 孟笑莹. 具有非单调发生率的时滞随机传染病模型分析[J]. 数学物理学报, 2017, 37(6): 1162-1175. |
[5] | 雷倩, 李宁, 杨晗. 梁方程解的爆破及渐近性行为[J]. 数学物理学报, 2015, 35(4): 738-747. |
[6] | 宋红丽, 郭真华. 一维可压Navier-Stokes 方程自由边值问题全局强解存在性和解的边界行为[J]. 数学物理学报, 2013, 33(4): 601-620. |
[7] | 毛剑峰, 黎野平. 三维双极Euler-Poisson方程初值问题光滑解的整体存在性和渐近性[J]. 数学物理学报, 2013, 33(3): 510-522. |
[8] | 孙盛, 王方磊, 安玉坤. 非线性电报方程组的双周期正解[J]. 数学物理学报, 2012, 32(6): 1050-1055. |
[9] | 代丽美, 秦国红. Hessian商方程具有渐近性质的整体解[J]. 数学物理学报, 2012, 32(3): 566-575. |
[10] | 周慧, 林正炎. U-统计量对数律的精确渐近性[J]. 数学物理学报, 2012, 32(1): 41-54. |
[11] | 陈传钟, 韩新方, 马丽. 布朗运动可加泛函渐近性的一些新结果[J]. 数学物理学报, 2010, 30(6): 1485-1494. |
[12] | 魏耿平, 申建华. 一类非线性中立型脉冲时滞微分方程解的渐近性[J]. 数学物理学报, 2010, 30(3): 753-763. |
[13] | 杨传富, 杨孝平. 一般边界条件下Sturm-Liouville算子的Ambarzumyan型定理[J]. 数学物理学报, 2010, 30(2): 449-455. |
[14] | 程东亚, 王岳宝. 一类随机游动上确界的密度的渐近性[J]. 数学物理学报, 2009, 29(5): 1206-1212. |
[15] | 连保胜, 胡适耕. 随机时滞 Lotka-Volterra 模型[J]. 数学物理学报, 2009, 29(5): 1246-1255. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 189
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 152
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|