数学物理学报, 2022, 42(5): 1294-1305 doi:

论文

Hardy空间上维林肯型系统下的极大算子

张传洲,, 王超越,, 张学英,

武汉科技大学理学院 武汉 430065

武汉科技大学冶金工业过程系统科学湖北省重点实验室 武汉 430081

The Maximal Operator of Vilenkin-like System on Hardy Spaces

Zhang Chuanzhou,, Wang Chaoyue,, Zhang Xueying,

College of Science, Wuhan University of Science and Technology, Wuhan 430065

Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081

通讯作者: 张学英, zhangxueying@wust.edu.cn

收稿日期: 2021-11-15  

基金资助: 国家自然科学基金.  11871195

Received: 2021-11-15  

Fund supported: the NSFC.  11871195

作者简介 About authors

张传洲,E-mail:zczwust@163.com , E-mail:zczwust@163.com

王超越,974882481@qq.com , E-mail:974882481@qq.com

Abstract

In this paper, we discuss the boundedness of maximal operator with respect to bounded Vilenkin-like system (or $\psi\alpha$ system) which is generalization of bounded Vilenkin system. We prove that when $0 < p <1/2$ the maximal operator $\tilde{\sigma}_p^*f=\sup\limits_{n\in {\Bbb N}}\frac{|\sigma_nf|}{(n+1)^{1/p-2}}$ is bounded from the martingale Hardy space $H_p$ to the space $L_p$, where $\sigma_nf$ is $n$-th Fej\'er mean with respect to bounded Vilenkin-like system. By a counterexample, we also prove that the maximal operator $\sup\limits_{n\in {\Bbb N}}\frac{|\sigma_nf|}{\varphi(n)}$ is not bounded from the martingale Hardy space $H_{p}$ to the space $L_{p,\infty}$ when $0 < p <1/2$ and $\mathop{\overline{\lim}}\limits_{n\rightarrow \infty}\frac{(n+1)^{1/p-2}}{\varphi(n)}=+\infty$.

Keywords: Vilenkin-like system ; Maximal operator ; Fejér mean ; Hardy spaces

PDF (311KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张传洲, 王超越, 张学英. Hardy空间上维林肯型系统下的极大算子. 数学物理学报[J], 2022, 42(5): 1294-1305 doi:

Zhang Chuanzhou, Wang Chaoyue, Zhang Xueying. The Maximal Operator of Vilenkin-like System on Hardy Spaces. Acta Mathematica Scientia[J], 2022, 42(5): 1294-1305 doi:

1 引言

在Zygmund[1], Schipp[2]的Walsh系统和Pál, Simon[3]的维林肯系统中, 可以证明关于Fejér均值极大算子的弱型不等式. 该$ \sigma^* $算子的$ (H_1, L_1) $型不等式被Fujii[4]所发现. Weisz[5]推广了这一结果并证明当$ 1/2< p\leq 1 $时, $ \sigma^* $是从Hardy空间$ H_p $$ L_p $有界的. Simon[6]通过给出反例, 证明当$ 0< p <1/2 $时, $ \sigma^* $的有界性不成立. 当$ p= 1/2 $时, $ \sigma^* $的有界性不成立的反例是由Goginava[7]给出(另见文献[8]). 当$ p= 1/2 $时, 还有如下结果. Weisz[9]证明了$ \sigma^* $是从Hardy空间$ H_{1/2} $到弱$ L_{1/2} $空间有界的. Goginava[10]定义极大算子

并证明该算子是从Hardy空间$ H_{1/2} $$ L_{1/2} $有界的. 他也证明对于任意的不减函数$ \varphi:{\Bbb N}\rightarrow [1, \infty) $, 满足条件

时, 极大算子$ \sup\limits_{n\in {\Bbb N}}\frac{|\sigma_nf|}{\varphi(n)} $不是从Hardy空间$ H_{1/2} $$ L_{1/2} $有界的. Tephnadze[11]推广了这一结果并且证明出当$ 0 < p <1/2 $时, 极大算子$ \tilde{\sigma}_p^*f=\sup\limits_{n\in {\Bbb N}}\frac{|\sigma_nf|}{(n+1)^{1/p-2}} $是从Hardy空间$ H_p $$ L_p $有界的, 其中$ \sigma_nf $是关于有界维林肯系统的Fejér均值.

该文的目的是把Tephnadze的结果推广到更为广泛的维林肯型系统.

2 定义和符号

该文用$ {\Bbb N} $表示非负整数的集合. 设$ m:=(m_0, m_1, \cdots, m_k, \cdots) $是满足$ m_k \geq 2 $$ (k\in {\Bbb N} ) $的序列. 对于所有的$ k\in {\Bbb N} $, 用$ Z_{m_k} $表示离散循环群. 不妨设$ Z_{m_k}=\{0, 1, \cdots, m_k-1 \} $, $ \mu_k $$ Z_{m_k} $上的测度. 设$ G_m $表示具有$ Z_{m_k} $的乘积拓扑和乘积测度$ \mu $的完全直积, 则$ G_m $形成了哈尔测度为1的紧阿贝尔群. $ G_m $中的元素则可以表示为$ (x_0, x_1, \cdots, x_k, \cdots) $的序列, 其中对于每一个$ k\in {\Bbb N} $, 满足$ x_k\in Z_{m_k} $.$ G_m $的拓扑完全由

$ (I_0(0):=G_m) $所决定. 如果生成系统$ m $是有界的, 则称$ G_m $是有界的. 设$ I_n(x):=I_n(0)+x $$ (n\in {\Bbb N}) $$ e_n:=(0, \cdots, 0, x_n=1, 0\cdots)\in G_m $, 则

$ \begin{equation} G_m\backslash I_N=\bigcup\limits_{s=0}^{N-1} I_s\backslash I_{s+1}=\biggl( \bigcup\limits _{k=0}^{N-2} \bigcup\limits_{l=k+1}^{N-1} I_{N}^{k, l}\biggl) \bigcup \biggl(\bigcup\limits_{k=1}^{N-1}I_N^{k, N}\biggl), \end{equation} $

其中

$ I_N^{k, \alpha, l, \beta}:=I_N(0, \cdots, x_k=\alpha, 0, \cdots, x_l=\beta, x_{l+1}, \cdots, x_{N-1}) $, $ x_i\in Z_{m_i}, i\geq l+1 $. 显然有

$ \begin{equation} I_{N}^{k, l}=\bigcup\limits_{\alpha=1}^{m_k-1}\bigcup\limits_{\beta=1}^{m_l-1}I_{N}^{k, \alpha, l, \beta}. \end{equation} $

$ \Sigma_n $为集合$ I_n(x)(x\in G_m) $生成的$ \sigma $代数, $ E_n $是关于$ \Sigma_n(n\in {\Bbb N}) $的条件期望算子.空间$ L_p(G_m) $表示满足如下条件的可测函数$ f $的全体(简记为$ L_{p} $), 其中

空间$ L_{p, \infty}(G_m) $表示满足如下条件的可测函数$ f $的全体(简记为$ L_{p, \infty} $), 其中

$ f=(f_n, n\in {\Bbb N}) $表示关于$ (\Sigma_n, n\in {\Bbb N}) $可测的鞅. 鞅$ f $的极大函数定义为

对于$ f\in L_1(G_m) $, 极大函数也可定义为

鞅Hardy空间$ H_p(G_m ) $表示满足如下条件的鞅的全体(简记为$ H_p $)

称可测函数$ a $是一个$ p $原子, 如果存在一个区间$ I $, 使

$ M_0:=1 $, $ M_{k+1}:=m_kM_k $, $ k\in {\Bbb N} $, 则每一个$ n\in {\Bbb N} $都可以唯一表示为$ n=\sum\limits_{k=0}^\infty n_kM_k, $$ 0\leq n_k<m_k, n_k\in {\Bbb N}. $数列$ (n_0, n_1, \cdots) $称为$ n $$ m $的展开. 令

显然有$ M_{|n|}\leq n<M_{|n|+1} $.

对于$ k\in{\Bbb N} $$ x\in G_m $, 定义Rademacher函数$ r_k $如下

显然对于任意的$ x\in G_m, n\in {\Bbb N} $

$ \begin{equation} \sum\limits_{i=0}^{m_n-1}r_n^i(x)=\left \{ \begin{array}{ll}0, & \mbox{若}\ x_n\neq 0, \\ m_n, {\quad} &\mbox{若}\ x_n=0. \end{array}\right. \end{equation} $

定义$ \psi_n $如下

现引入更加广泛的维林肯型(或$ \psi\alpha $)系统(另见文献[1213]). 设函数$ \alpha_n, \alpha_j^k : G_m\rightarrow {\cal C} $$ (n, j, k\in {\Bbb N}) $满足对于任意的$ x, y\in G_m $

(1) $ \alpha_j^k $是关于$ \Sigma_j $可测的, 且$ \alpha_j^k(x+y)=\alpha_j^k(x)\alpha_j^k(y) \ \ (j, k\in {\Bbb N}); $

(2) $ |\alpha_j^k|=\alpha_j^k(0)=\alpha_0^k=\alpha_j^0=1\ \ (j, k\in {\Bbb N}); $

(3) $ \alpha_n:=\prod\limits_{j=0}^\infty \alpha_j^{n^{(j)}}\ \ (n\in {\Bbb N}). $

$ \chi_n:=\psi_n\alpha_n\ (n\in {\Bbb N}) $. $ \chi:=\{\chi_n:n\in{\Bbb N}\} $被称作维林肯型(或$ \psi\alpha $)系统. 下面给出几个例子

1) 如果$ \forall \ k, j \in {\Bbb N} $, 有$ \alpha_j^k=1 $, $ \psi\alpha $系统就是维林肯系统.

2) 如果有$ m_j=2 $ ($ \forall j\in {\Bbb N} $)$ \alpha_j^{n^{(j)}}=(\beta_j)^{n_j}, $其中

$ \psi\alpha $系统就是二进整数群的特征系统.

3) 定义

那么就得到了一个逼近理论中很有用的维林肯型系统.

现定义傅里叶系数, 傅里叶级数的部分和, 狄利克雷核, Fejér均值, Fejér核如下

$ f=(f_k, k\in {\Bbb N}) $是鞅, 上述傅里叶系数则做适当修改$ \hat{f}(n):=\lim\limits_{k\rightarrow \infty}\int_{G_m}f_k\bar{\chi}_n $. 显然有

文献[6]中, Simon证明了狄利克雷核函数满足

$ \begin{equation} D^\chi_{M_n}(y, x)=D_{M_n}(y-x)=\left \{ \begin{array}{ll}M_n, {\quad} & \mbox{若}\ y-x\in I_n, \\ 0, &\mbox{若}\ y-x\in G_m \backslash I_n. \end{array}\right. \end{equation} $

此外对于$ y, x\in G_m $, 有

$ \begin{equation} D_n^\chi(y, x)=\alpha_n(y)\bar{\alpha}_n(x)D^\psi_n(y-x) =\chi_n(y)\bar{\chi}_n(x)\bigg(\sum\limits_{j=0}^\infty D_{M_j}(y-x)\sum\limits_{k=m_j-n_j}^{m_j-1}r_j^k(y-x)\bigg), \end{equation} $

其中$ \psi $是维林肯系统.

$ \alpha_j^k(x+y)=\alpha_j^k(x)\alpha_j^k(y) $$ r_j(x+y)=r_j(x)r_j(y) $, 得

$ \begin{eqnarray} \chi_n(y)\bar{\chi}_n(x)&=&\chi_n(y-x+x)\bar{\chi}_n(x)=\chi_n(y-x)\chi_n(x)\bar{\chi}_n(x){} \\&=&\chi_n(y-x)|\chi_n(x)|^2=\chi_n(y-x)\bar{\chi}_n(0). \end{eqnarray} $

从而

$ \begin{equation} D_n^\chi(y, x)=D_n^\chi(y-x, 0)\ \mbox{ 和 }\ K_n^\chi(y, x)=K_n^\chi(y-x, 0). \end{equation} $

$ f\in L_1(G_m) $, 易得部分和序列$ (S_{M_n}f, n\in{\Bbb N}) $是鞅. 接下来本文将考虑算子$ \tilde{\sigma}_p^* $的有界性, 其中

3 辅助命题

引理3.1   设$ A>t, t, A\in N, z\in I_t\backslash I_{t+1}. $那么

$ \begin{equation} K_{M_A}(z, 0)=\left \{ \begin{array}{ll}0 , & \mbox{若}\ z-z_te_t\in G_m\backslash I_A, \\ { } \frac{M_t}{1-r_t(z)}, {\quad} &\mbox{若}\ z-z_te_t\in I_A. \end{array}\right. \end{equation} $

  根据函数$ \alpha_n $和Fejér核和$ \psi\alpha $系统的定义, 得到如果$ z\in I_t\backslash I_{t+1} $ i.e. $ (z_0=\cdots=z_{t-1}=0, z_t\neq 0) $则有

$ \begin{eqnarray} M_AK_{M_A}(z, 0)&=&\sum\limits_{k=0}^{M_A-1}D_k(z, 0){} \\ &=&\sum\limits_{k=0}^{M_A-1}(\sum\limits_{j=0}^{t-1}k_jM_j)\chi_k(z)\bar{\chi}_k(0) +\sum\limits_{k=0}^{M_A-1}M_t\sum\limits_{p=m_t-k_t}^{m_t-1}r_t^p(z-0)\chi_k(z)\bar{\chi}_k(0){} \\ &=&:\sum^1+\sum^2, {} \\ \sum^1 &=&\sum\limits_{k_{A-1}=0}^{m_{A-1}-1}\cdots \sum\limits_{k_{t+1}=0}^{m_{t+1}-1}\sum\limits_{k_{t-1}=0}^{m_{t-1}-1}\cdots \sum\limits_{k_0=0}^{m_0-1}(\sum\limits_{j=0}^{t-1}k_jM_j){} \\ &&\cdot\prod\limits_{l=0}^\infty r^{k_l}_l(z-0)\alpha_{l}^{k^{(l)}}(z)\bar{\alpha}_l^{k^{(l)}}(0)\sum\limits_{k_t=0}^{m_t-1}r_t^{k_t}(z-0){} \\ &=&\sum\limits_{k_t=0}^{m_t-1}r_t^{k_t}(z)\phi(z, 0), \end{eqnarray} $

其中函数$ \phi $不依赖于$ k_t $. 因此, $ \sum\limits^1=0. $$ 0\leq k< M_A $时, 有$ k_j=0, \ j=A, A+1\cdots $. 另外又有

$ \begin{eqnarray} \sum^2&=&\sum\limits_{k_{A-1}=0}^{m_{A-1}-1}\cdots \sum\limits_{k_{t+1}=0}^{m_{t+1}-1}\sum\limits_{k_{t-1}=0}^{m_{t-1}-1}\cdots\sum\limits_{k_0=0}^{m_0-1} \prod\limits_{l=0}^{A-1} r^{k_l}_l(z-0)\alpha_{l}^{k^{(l)}}(z)\bar{\alpha}_l^{k^{(l)}}(0)\sum\limits_{p=m_t-k_t}^{m_t-1}r_t^p(z-0){} \\ &=&\prod\limits_{l=0, l\neq t}^{A-1}(\sum\limits_{k_l=0}^{m_l-1}r_l^{k_l}(z)\alpha^{k^{(l)}}_l(z) \bar{\alpha}^{k^{(l)}}_l(0)) \sum\limits_{k_t=0}^{m_t-1}r_t^{k_t}(z)\alpha^{k^{(t)}}_t(z)\bar{\alpha}^{k^{(t)}}_t(0)\sum\limits_{i={m_t-k_t}}^{m_t-1} r^i_t(z). \end{eqnarray} $

$ \alpha_n $的定义知, 知$ \alpha_n(0\leq n<M_A) $$ I_A $上是常数. 如果$ z-z_te_t\in G_m\backslash I_A $ (即: 存在一个$ s $ ($ A>s>t $) 使$ z_s\neq 0 $), 从而得到

$ \begin{eqnarray} \sum^2&=&\prod\limits_{l=0, l\neq s}^{A-1}(\sum\limits_{k_l=0}^{m_l-1}r_l^{k_l}(z)\alpha^{k^{(l)}}_l(z) \bar{\alpha}^{k^{(l)}}_l(0)) \sum\limits_{k_s=0}^{m_s-1}r_s^{k_s}(z)\alpha^{k^{(s)}}_t(z)\bar{\alpha}^{k^{(s)}}_t(0)\sum\limits_{i={m_t-k_t}}^{m_t-1} r^i_t(z){} \\ &=&\prod\limits_{l=0, l\neq s}^{A-1}(\sum\limits_{k_l=0}^{m_l-1}r_l^{k_l}(z)\alpha^{k^{(l)}}_l(z) \bar{\alpha}^{k^{(l)}}_l(0)) \sum\limits_{k_s=0}^{m_s-1}r_s^{k_s}(z)\sum\limits_{i={m_t-k_t}}^{m_t-1} r^i_t(z){} \\&=&0. \end{eqnarray} $

这样$ K_{M_A}(z, 0)=0 $.

另一方面, 如果$ z-z_te_t\in I_A $ (即$ z=(0, 0\cdots, 0, z_t, 0\cdots, z_{A}, \cdots)) $, 则有

$ \begin{eqnarray} M_AK_{M_A}(z, 0) &=&M_t\prod\limits_{l=0, l\neq t}^{A-1}\bigg(\sum\limits_{k_l=0}^{m_l-1}r_l^{k_l}(z)\alpha^{k^{(l)}}_l(z) \bar{\alpha}^{k^{(l)}}_l(0)\bigg){} \\ &&\cdot\sum\limits_{k_t=0}^{m_t-1}r_t^{k_t}(z)\alpha^{k^{(t)}}_t(z)\bar{\alpha}^{k^{(t)}}_t(0)\sum\limits_{i={m_t-k_t}}^{m_t-1} r^i_t(z){} \\ &=& M_t\cdot m_0\cdots m_{t-1}\prod\limits_{l=t+1}^{A-1}\bigg(\sum\limits_{k_l=0}^{m_l-1}\alpha^{k^{(l)}}_l(z) \bar{\alpha}^{k^{(l)}}_l(0)\bigg){} \\ &&\cdot\sum\limits_{k_t=0}^{m_t-1}r_t^{k_t}(z)\alpha^{k^{(t)}}_t(z)\bar{\alpha}^{k^{(t)}}_t(0)\sum\limits_{i={m_t-k_t}}^{m_t-1}r^i_t(z){} \\ &=&M_t\cdot m_0\cdots m_{t-1} m_{t+1}\cdots m_{A-1}\sum\limits_{k_t=0}^{m_t-1}r_t^{k_t}(z)\alpha^{k^{(t)}}_t(z)\bar{\alpha}^{k^{(t)}}_t(0)\sum\limits_{i={m_t-k_t}}^{m_t-1}r^i_t(z){} \\ &=&M_t m_0\cdots m_{t-1} m_{t+1}\cdots m_{A-1}\sum\limits_{k_t=0}^{m_t-1}r_t^{k_t}(z)\sum\limits_{i={m_t-k_t}}^{m_t-1}r^i_t(z){} \\ &=&M_t M_A/m_t\sum\limits_{k_t=0}^{m_t-1}\frac{r_t^{k_t}(z)-1}{r_t(z)-1}. \end{eqnarray} $

$ \begin{equation} M_AK_{M_A}(z, 0)=M_tM_A\frac{1}{1-r_t(z)}. \end{equation} $

证毕.

备注3.1   设$ |n|\geq s>t, \quad n, s, t\in {\Bbb N}, z\in I_t\backslash I_{t+1}. $则有

$ \begin{equation} K_{n^{(s+1)}, M_s}(z, 0):=\sum\limits_{k=n^{(s+1)}}^{n^{(s+1)}+M_s-1}D_k(z, 0)=\left \{ \begin{array}{ll}0 , & \mbox{若}\ z-z_te_t\in G_m\backslash I_s, \\ { } \frac{M_sM_t \chi_{n^{(s)}}(z)}{1-r_t(z)}, &\mbox{若}\ z-z_te_t\in I_s. \end{array}\right. \end{equation} $

证明类似于引理3.1, 略.

引理3.2   设$ 2< A\in {\Bbb N}_+, k\leq s < A $$ n^*_A:=M_{2A}+M_{2A-2}+\cdots+M_2+M_0. $则有

对于$ z\in I_{2A}(0, \cdots, 0, z_{2k}\neq 0, 0, \cdots, 0, z_{2s}\neq 0, z_{2s+1}, \cdots, z_{2A-1}), k= 0, 1, \cdots, A-3, $$ s=k+ 2, $$ k+ 3, \cdots, A-1. $

   设$ n\in {\Bbb N}_+ $. 由(2.5)式可知

因此

$ \begin{equation} |D_n(z, 0)|\leq \sum\limits_{j=0}^\infty n_j D_{M_j}(z). \end{equation} $

因为$ z\in I_t\backslash I_{t+1} $

因此, 当$ s\leq t $时, 得到

$ \begin{equation} |K_{n^{(s)}, M_s}(z, 0)| =\bigg|\sum\limits_{k=n^{(s)}}^{n^{(s)}+M_s-1}D^\chi_k(z, 0)\bigg|\leq M_s M_{t+1}. \end{equation} $

由(3.2) 式得

如果$ t<s\leq |n| $, $ z\in I_t\backslash I_{t+1} $$ z-z_te_t\in I_s $, 也可得

$ \begin{equation} \frac{1}{2}\leq \frac{|K_{n^{(s+1)}, M_s}(z, 0)|}{ M_sM_t }= \bigg|\frac{1}{1-r_t(z)}\bigg|= \bigg|\frac{1}{2\sin(\pi z_t/m_t)}\bigg|\leq\frac{m_t}{\pi} . \end{equation} $

由于$ nK_n=\sum\limits_{h=0}^{|n|}\sum\limits_{j=0}^{n_h-1}K_{n^{(h)+1}+ jM_h, M_h} $$ (n^*_{A-1})_h=1 $假若$ 2|h $$ h<2A $, 否则$ (n^*_{A-1})_h=0, $我们有

$ \begin{eqnarray} n^*_{A-1}|K_{n^*_{A-1}}(z, 0)| &=& \bigg|\sum\limits_{h=0, 2|h}^{2A-2}K_{(n^*_{A-1})^{(h)+1}, M_h}(z, 0)\bigg|{} \\ &=&\bigg|\sum\limits_{t=0}^{s}K_{(n^*_{A-1})^{(2l+1)}, M_{2l}}(z, 0)\bigg| =\bigg|\sum\limits_{t=0}^{s}K_{(n^*_{A-1})^{(2l+2)}, M_{2l}}(z, 0)\bigg|{} \\ &\geq& |K_{(n^*_{A-1})^{(2s+2)}, M_{2s}}(z, 0)| -\sum\limits_{t=0}^{s-1}|K_{(n^*_{A-1})^{(2t+2)}, M_{2t}}(z, 0)|{} \\ &\geq& \frac{1}{2}M_{2s}M_{2k}-\frac{1}{\pi}\sum\limits_{t=0}^{s-1}M_{2t+1}M_{2k}. \end{eqnarray} $

很容易得到

$ \begin{equation} \sum\limits_{t=0}^{s-1}M_{2t+1}\leq M_{2s-2}+M_{2s-1}=\frac{M_{2s}}{m_{2s-1} m_{2s-2}}+\frac{M_{2s}}{m_{2s-1}}\leq \frac{3}{4}M_{2s}. \end{equation} $

因此

$ \begin{equation} n^*_{A-1}|K_{n^*_{A-1}}(z, 0)|\geq \Big(\frac{1}{2}-\frac{3}{4\pi}\Big)M_{2k}M_{2s}\geq \frac{M_{2k}M_{2s}}{4}. \end{equation} $

证毕.

引理3.3   设$ z\in I_{N}^{k, l}, k=0, \cdots, N-2, l=k+1, \cdots, N-1 $$ n\geq M_N. $则有

$ \begin{equation} \int_{I_N}|K_n(z-t, 0)|{\rm d}\mu(t)\leq \frac{cM_l M_k}{nM_N}. \end{equation} $

$ z\in I_{N}^{k, N}, k=0, \cdots, N-1 $$ n\geq M_N. $则有

$ \begin{equation} \int_{I_N}|K_n(z-t, 0)|{\rm d}\mu(t)\leq \frac{c M_k}{M_N}, \end{equation} $

其中$ c $是一个常数.

   设$ z\in I_N^{k, \alpha, l, \beta}. $应用引理3.1, 得到当$ A>l $时, $ K_{M_A}(z, 0)=0 $. 现令$ k<A\leq l. $得到

$ \begin{equation} |K_{M_A}(z, 0)|= \bigg|\frac{M_k}{1-r_k}\bigg|= \bigg|\frac{M_k}{2\sin(\pi z_k/m_k)}\bigg|\leq \frac{m_kM_k}{\pi}. \end{equation} $

$ z\in I_{N}^{k, l}, 0\leq k<l\leq N-1 $$ t\in I_N $.$ z-t\in I_{N}^{k, l} $$ n|K_n(z-t, 0)|\leq c\sum\limits_{A=0}^{l}M_A |K_{M_A}(z-t, 0)|, $

$ \begin{eqnarray} \int_{I_N}|K_n(z-t, 0)|{\rm d}\mu(t)&\leq& c\frac{1}{n}\sum\limits_{A=0}^{l}M_A \int_{I_N}|K_{M_A}(z-t, 0)|{\rm d}\mu(t){} \\ &\leq& c\frac{1}{nM_N}\sum\limits_{A=0}^{l}M_AM_k\leq c\frac{M_lM_k}{nM_N}. \end{eqnarray} $

$ z\in I_{N}^{k, N} $, 则有

$ \begin{eqnarray} \int_{I_N}|K_n(z-t, 0)|{\rm d}\mu(t)&\leq& c\frac{1}{n}\sum\limits_{A=0}^{|n|}M_A \int_{I_N}|K_{M_A}(z-t, 0)|{\rm d}\mu(t). \end{eqnarray} $

假设$ z=(0, \cdots, 0, z_k\neq 0, \cdots z_{N-1}=0, z_N, z_{N+1}, \cdots z_q\cdots z_{|n|-1}, \cdots) $$ t=(0, \cdots, 0, $$ z_N, \cdots, $$ z_q-1, t_q\neq z_q, t_{q+1}, \cdots t_{|n|-1}, \cdots) $, $ q=N, \cdots |n|-1 $, 则有

$ \begin{eqnarray} \int_{I_N}|K_n(z-t, 0)|{\rm d}\mu(t)&\leq& c\frac{1}{n}\sum\limits_{A=0}^{q-1}M_A \int_{I_N}|K_{M_A}(z-t, 0)|{\rm d}\mu(t){} \\ &\leq& c\frac{1}{nM_N}\sum\limits_{A=0}^{q-1}M_A M_k\leq c\frac{M_qM_k}{nM_N} {} \\ &\leq& c\frac{M_k}{M_N}. \end{eqnarray} $

如果假设$ z=(0, \cdots, 0, z_m\neq 0, \cdots z_{N-1}=0, z_N, z_{N+1}, \cdots z_q\cdots z_{|n|-1}, \cdots) $$ t=(0, \cdots, 0, $$ z_N=0, \cdots, $$ z_{|n|-1}, \cdots) $, $ q=N, \cdots |n|-1 $, 也可得到

$ \begin{eqnarray} \int_{I_N}|K_n(z-t, 0)|{\rm d}\mu(t)&\leq& c\frac{1}{n}\sum\limits_{A=0}^{|n|-1}M_A \int_{I_N}|K_{M_A}(z-t, 0)|{\rm d}\mu(t){} \\ &\leq& c\frac{1}{n}\sum\limits_{A=0}^{|n|-1}M_A \int_{I_N}M_k{\rm d}\mu(t){} \\ &\leq& c\frac{M_k}{M_N} . \end{eqnarray} $

结合(3.17), (3.19) 和(3.20) 式完成证明.

引理3.4[14]   假设算子$ T $是线性的, 并且当$ 0<p\leq 1 $对任意$ p $原子$ a $满足

其中$ I $是原子$ a $的支撑. 如果$ T $$ L_\infty $$ L_\infty $有界, 则有$ \|Tf\|_{L_p(G_m)}\leq c_p \|f\|_{H_p(G_m)}. $

4 主要结果

定理4.1   设$ 0< p <1/2 $, 则极大算子$ \tilde{\sigma}_p^* $是从鞅Hardy空间$ H_p $$ L_p $空间有界的.

   设$ a $是一个任意的$ p $原子, 支撑为$ I $, 且满足$ \mu(I) =M^{-1}_N $. 不妨设$ I=I_N $.$ n\leq M_N $时, 有$ \sigma_n(a) = 0 $. 因此, 可以假设$ n > M_N $.

$ \|a\|_\infty\leq \mu(I)^{-\frac{1}{p}}=M_N^{\frac{1}{p}} $, 可得

$ \begin{eqnarray} \frac{|\sigma_n(a)(z)|}{(n+1)^{1/p-2}}&\leq& \frac{1}{(n+1)^{1/p-2}}\bigg|\int_{G_m}a(t)K_n(z, t){\rm d}\mu(t)\bigg|{} \\ &=&\frac{1}{(n+1)^{1/p-2}}\bigg|\int_{I}a(t)K_n(z-t, 0){\rm d}\mu(t)\bigg|{} \\ &\leq& \frac{\|a\|_\infty }{(n+1)^{1/p-2}}\int_{I}|K_n(z-t, 0)|{\rm d}\mu(t){} \\ &\leq& \frac{M_N^{1/p} }{(n+1)^{1/p-2}}\int_{I}|K_n(z-t, 0)|{\rm d}\mu(t). \end{eqnarray} $

$ z\in I_{N}^{k, l} $, $ 0\leq k<l\leq N $. 根据引理3.3和$ 1/p-2>0 $, 可得

$ \begin{eqnarray} \frac{|\sigma_n(a)(z)|}{(n+1)^{1/p-2}} &\leq&c \frac{M_N^{1/p} }{M_N^{1/p-2}} \frac{M_l M_k}{nM_N} \leq c M_l M_k. \end{eqnarray} $

结合(2.1) 和(4.2)式可得

$ \begin{eqnarray} \int_{G_m\backslash I} \Big(\frac{|\sigma_n(a)(z)|}{(n+1)^{1/p-2}}\Big)^p{\rm d}\mu(z) &=&\sum\limits_{k=0}^{N-2}\sum\limits_{l=k+1}^{ N-1}\sum\limits_{x_j=0, j\in \{l+1, \cdots, N-1\}}^{m_j-1} \int_{I_N^{k, l}} \Big(\frac{|\sigma_n(a)(z)|}{(n+1)^{1/p-2}}\Big)^p{\rm d}\mu(z){} \\ &&+\sum\limits_{k=0}^{N-1}\int_{I_N^{k, N}} \Big(\frac{|\sigma_n(a)(z)|}{(n+1)^{1/p-2}}\Big)^p{\rm d}\mu(z){} \\ &\leq & c\sum\limits_{k=0}^{N-2}\sum\limits_{l=k+1}^{ N-1}\frac{m_l\cdots m_{N-1}}{M_N}(M_lM_k)^p+c\sum\limits_{k=0}^{N-1}\frac{1}{M_N}(M_NM_k)^p{} \\ &\leq & c\sum\limits_{k=0}^{N-2}\sum\limits_{l=k+1}^{ N-1}\frac{(M_lM_k)^p}{M_l}+c\sum\limits_{k=0}^{N-1}\frac{1}{M_N}(M_NM_k)^p{} \\ &= & c\sum\limits_{k=0}^{N-2}\sum\limits_{l=k+1}^{ N-1}\frac{1}{M_l^{1-2p}}\frac{(M_lM_k)^p}{M^{2p}_l}+c\sum\limits_{k=0}^{N-1}\frac{1}{M_N^{1-2p}}\frac{(M_NM_k)^p}{M_N^{2p}}{} \\ &\leq & c\sum\limits_{k=0}^{N-2}\sum\limits_{l=k+1}^{ N-1}\frac{1}{2^{(1-2p)l}}+c\sum\limits_{k=0}^{N-1}\frac{1}{2^{N(1-2p)}}{} \\ &= & c\sum\limits_{k=0}^{N-2}\frac{1}{2^{(1-2p)k}}+c\frac{N}{2^{N(1-2p)}}\leq c. \end{eqnarray} $

证毕.

定理4.2   设$ 0<p<1/2 $, $ \varphi :{\Bbb N}\rightarrow [1, \infty) $为非减函数, 满足条件

$ \exists f\in H_p $使得

$ \sup\limits_{n\in {\Bbb N}}\frac{|\sigma_n(f)|}{\varphi(n)} $不是从鞅Hardy空间$ H_{p} $$ L_{p, \infty} $有界的.

   设$ \{\lambda_{k};k\in {\Bbb N}_{+}\} $是一个递增正整数序列, 满足

很明显对于每一个$ \lambda_{k} $, 存在一个正整数$ m' _{k} $, 使$ q_{m_{k}' }<\lambda_{k}< cq_{m_{k}' } $. 由于$ \varphi(n) $是不减函数, 可得

$ \begin{eqnarray} \mathop{\overline{\lim}}\limits_{k\to\infty}\frac{M_{2m_{k}' }^{1/p-2}}{\varphi(q_{m_{k}' })}\geq c\mathop{\overline{\lim}}\limits_{k\to\infty}\frac{q_{m_{k}' }^{1/p-2}}{\varphi(q_{m_{k}' })} \geq c\lim\limits_{k\to\infty}\frac{\lambda_{k}^{1/p-2}}{\varphi(\lambda_{k})}=\infty. \end{eqnarray} $

选取$ \{n_{k};k\in {\Bbb N}_{+}\}\subset\{m' _{k};k\in {\Bbb N}_{+}\} $, 使

显然得到

$ \begin{equation} \hat{f}_{n_{k}}(i)=\left\{ \begin{array}{ll}1, {\quad}&\mbox{若} \quad i = M_{2n_{k}}, \ldots, M_{2n_{k}+1}-1, \\ 0, &\mbox{其他}. \end{array}\right. \end{equation} $

进一步得到

$ \begin{equation} S_{i}f_{n_{k}}(x)=\left\{ \begin{array}{lll}D_{i}(x, 0)-D_{M_{2n_{k}}}(x, 0), {\quad}&\mbox{若} \quad i= M_{2n_{k}}, \ldots, M_{2n_{k}+1}-1, \\ f_{n_{k}}(x), &\mbox{若} \quad i\geq M_{2n_{k}+1}, \\ 0, &\mbox{其他}. \end{array}\right. \end{equation} $

因此可得

$ \begin{eqnarray} \|f_{n_{k}}\|_{H_{p}} &=&\parallel \sup\limits_{n\in {\Bbb N}}S_{M_{n}}f_{n_{k}}\parallel_{L_{p}}{} \\ &=&\parallel D_{M_{2n_{k}+1}}-D_{M_{2n_{k}}}\parallel_{L_{p}}{} \\ &=&\bigg(\int_{{I_{2n_{k}}}\setminus{I_{2n_{k}+1}}}M_{2n_{k}}^{p}{\rm d}\mu(x) +\int_{I_{2n_{k}+1}}(M_{2n_{k}+1}-M_{2n_{k}})^{p}{\rm d}\mu(x)\bigg)^{1/p}{} \\ &=&\bigg(\frac{m_{2n_{k}}-1}{M_{2n_{k}+1}}M^p_{2n_{k}}+\frac{(m_{2n_{k}}-1)^{p}}{M_{2n_{k}+1}}M^p_{2n_{k}}\bigg)^{1/p}{} \\ &\leq& M^{1-1/p}_{2n_{k}}. \end{eqnarray} $

由(4.6)式可得

$ \begin{eqnarray} \frac{|\sigma_{q_{n_{k}}} f_{n_{k}}(x)|}{\varphi(q_{n_{k}})} &=&\frac{1}{\varphi(q_{n_{k}})q_{n_{k}}}\bigg|\sum\limits_{j= 0}^{q_{n_{k}}-1}S_{j}f_{n_{k}}(x)\bigg| =\frac{1}{\varphi(q_{n_{k}})q_{n_{k}}}\bigg|\sum\limits_{j= M_{2n_{k}}}^{q_{n_{k}}-1}S_{j}f_{n_{k}}(x)\bigg|{} \\ &=&\frac{1}{\varphi(q_{n_{k}})q_{n_{k}}}\bigg|\sum\limits_{j= M_{2n_{k}}}^{q_{n_{k}}-1}(D_{j}(x, 0)-D_{M_{2n_{k}}}(x, 0))\bigg|{} \\ &=&\frac{1}{\varphi(q_{n_{k}})q_{n_{k}}}\bigg|\sum\limits_{j =0}^{q_{n_{k}-1}-1}(D_{j+M_{2n_{k}}}(x, 0)-D_{M_{2n_{k}}}(x, 0))\bigg|. \end{eqnarray} $

可得

$ \begin{eqnarray} \frac{|\sigma_{q_{n_{k}}}f_{n_{k}}(x)|}{\varphi(q_{n_{k}})}= \frac{1}{\varphi(q_{n_{k}})q_{n_{k}}}\bigg|\sum\limits_{j=0}^{q_{n_{k}-1}-1}D_{j}(x, 0)\bigg| =\frac{1}{\varphi(q_{n_{k}})q_{n_{k}}}\frac{q_{n_{k}-1}}{q_{n_{k}}}|K_{q_{n_{k}}-1}(x, 0)|. \end{eqnarray} $

$ x\in I^{2s, 2l}_{2n_{k}} $. 利用引理3.2可得

$ \begin{equation} \frac{|\sigma_{q_{n_{k}}}f_{n_{k}}(x)|}{\varphi(q_{n_{k}})}\geq\frac{cM_{2s}M_{2l}}{M_{2n_{k}}\varphi(q_{n_{k}})}. \end{equation} $

从而

$ \begin{eqnarray} &&\mu \bigg\{x\in G_{m}:\frac{\mid\sigma_{q_{n_{k}}}f_{n_{k}}(x)\mid}{\varphi(q_{n_{k}})} \geq\frac{c}{M_{2n_{k}}\varphi(q_{n_{k}})}\bigg\}{} \\ &\geq&\mu \bigg\{x\in I_{2n_{k}}^{2, 4}:\frac{\mid\sigma_{q_{n_{k}}}f_{n_{k}}(x)\mid }{\varphi(q_{n_{k}})}\geq\frac{c}{M_{2n_{k}}\varphi(q_{n_{k}})}\bigg\}\geq\mu(I_{2n_{k}}^{2, 4})>c>0. \end{eqnarray} $

因此可得

证毕.

参考文献

Zygmund A . Trigonometric Series. Vol 1. Cambridge: Cambridge University Press, 1959

[本文引用: 1]

Schipp F .

Certain rearranngements of series in the Walsh series

Mat Zametki, 1975, 18, 193- 201

[本文引用: 1]

Pál J , Simon P .

On a generalization of the comncept of derivate

Acta Math Hung, 1977, 29 (1/2): 155- 164

[本文引用: 1]

Fujii N J .

A maximal inequality for H1 functions on the generalized Walsh-Paley group

Proc Amer Math Soc, 1979, 77, 111- 116

[本文引用: 1]

Weisz F .

Cesàro summability of one and two-dimensional Walsh-Fourier series

Anal Math, 1996, 22, 229- 242

DOI:10.1007/BF02205221      [本文引用: 1]

Simon P .

Cesaro summability with respect to two-parameter Walsh systems

Monatsh Math, 2000, 131, 321- 334

[本文引用: 2]

Goginava U .

The maximal operator of the Fejér means of the character system of the p-series field in the Kaczmarz rearrangement

Publ Math Debrecen, 2007, 71 (1/2): 43- 55

[本文引用: 1]

Lahota I , Gát G , Goginava U .

Maximal operators of Fejér means of Vilenkin-Fourier series

J Inequal Pure Appl Math, 2006, 7 (4): 1- 7

[本文引用: 1]

Weisz F .

Weak type inequalities for the Walsh and bounded Ciesielski systems

Anal Math, 2004, 30 (2): 147- 160

DOI:10.1023/B:ANAM.0000033225.98714.4b      [本文引用: 1]

Goginava U .

Maximal operators of Fejér-Walsh means

Acta Sci Math (Szeged), 2008, 74 (3/4): 615- 624

[本文引用: 1]

Tephnadze G .

On the maximal operator of Vilenkin-Fejér means on Hardy spaces

Mathematical Inequalities and Applications, 2013, 16 (2): 301- 312

[本文引用: 1]

Gát G .

Investigation of some operators with respect to Vilenkin-like systems

Annales Univ Sci Budapestiensis, 1994, 14, 61- 70

[本文引用: 1]

Zhang C Z , Liu P D .

Weighted average of Dirichlet kernels for Vilenkin-like system

Acta Mathematica Scientia, 2009, 29B (1): 45- 55

[本文引用: 1]

Weisz F. Martingale Hardy spaces and their applications in Fourier analysis. Springer, 1994

[本文引用: 1]

/