数学物理学报 ›› 2022, Vol. 42 ›› Issue (5): 1433-1450.
收稿日期:
2021-02-10
出版日期:
2022-10-26
发布日期:
2022-09-30
通讯作者:
刘立山
E-mail:lznwnuliqiang@126.com;mathlls@163.com
作者简介:
李强, E-mail: 基金资助:
Received:
2021-02-10
Online:
2022-10-26
Published:
2022-09-30
Contact:
Lishan Liu
E-mail:lznwnuliqiang@126.com;mathlls@163.com
Supported by:
摘要:
该文讨论了具有分段Caputo导数和周期脉冲的分数阶发展方程, 建立了具有周期脉冲的相关线性发展方程周期mild解的存在性和唯一性. 借助线性脉冲周期问题解算子的表达式, 利用算子半群理论和不动点定理, 证明了半线性脉冲周期问题周期mild解的一些新的存在性结果.
中图分类号:
李强,刘立山. 具有周期脉冲的分数阶发展方程周期mild解的存在性[J]. 数学物理学报, 2022, 42(5): 1433-1450.
Qiang Li,Lishan Liu. Existence of Periodic Mild Solutions for Fractional Evolution Equations with Periodic Impulses[J]. Acta mathematica scientia,Series A, 2022, 42(5): 1433-1450.
1 | Amann H. Nonlinear Operators in Ordered Banach Spaces and Some Applicitions to Nonlinear Boundary Value Problem// Nonlinear Operators and the Calculus of Variations, Lecture Notes in Mathmematics. Berlin and New York: Springer-Verlag, 1976: 1-55 |
2 | Amann H. Periodic Solutions of Semilinear Parabolic Equations// Cesari L, Kannan R, Weinberger R, eds. Nonlinear Anal. A Collection of Papers in Honor of Erich H. Rothe, New York: Academic Press, 1978: 1-29 |
3 |
Anh C , Ke T . On nonlocal problems for retrded fractional differential equations in Banach spaces. Fixed Point Theory, 2014, 16, 373- 392
doi: 10.1007/s11784-015-0218-3 |
4 |
Burton T , Kirk C . A fixed point theorem of Krasnoselskiii-Schaefer type. Math Nachr, 1998, 189, 23- 31
doi: 10.1002/mana.19981890103 |
5 |
Chen P , Li Y . Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions. Z Angew Math Phys, 2014, 65, 711- 728
doi: 10.1007/s00033-013-0351-z |
6 |
Chen P , Zhang X , Li Y . Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators. Fract Calcu Appl Anal, 2020, 23, 268- 291
doi: 10.1515/fca-2020-0011 |
7 | Fečkan M , Wang J . Periodic impulsive fractional differential equations. Adv Nonlinear Anal, 2019, 8, 482- 496 |
8 |
Gou H , Li B . Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup. Commun Nonlinear Sci Numer Simul, 2017, 42, 204- 214
doi: 10.1016/j.cnsns.2016.05.021 |
9 |
Gou H , Li Y . A study on impulsive fractional hybrid evolution equations using sequence method. Comput Appl Math, 2020, 39, 225
doi: 10.1007/s40314-020-01239-y |
10 | Kilbas A , Srivastava H , Trujillo J . Theory and Applications of Fractional Differential Equations. Boston, USA: Elsevier, 2006 |
11 |
Li Y . Existence and asymptotic stability of periodic solution for evolution equations with delays. J Funct Anal, 2011, 261, 1309- 1324
doi: 10.1016/j.jfa.2011.05.001 |
12 |
Li Q , Wei W . Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evol Equ Control Theory, 2020, 9, 753- 772
doi: 10.3934/eect.2020032 |
13 |
Liang J , Liu J , Xiao T , Xu H . Periodicity of solutions to the Cauchy problem for nonautonomous impulsive delay evolution equations in Banach spaces. Anal Appl, 2017, 15, 457- 476
doi: 10.1142/S0219530515500281 |
14 | Pazy A . Semigroups of Linear Operators and Applications to Partial Differential Equations. Berlin: Springer-Verlag, 1983 |
15 |
Pierri M . On S-asymptotically ω-periodic functions and applications. Nonlinear Anal, 2012, 75, 651- 661
doi: 10.1016/j.na.2011.08.059 |
16 |
Ren L , Wang J , Fečkan M . Asymptotically periodic solutions for Caputo type fractional evolution equations. Fract Calc Appl Anal, 2018, 21, 1294- 1312
doi: 10.1515/fca-2018-0068 |
17 |
Ren L , Wang J , Fečkan M . Periodic mild solutions of impulsive fractional evolution equations. AIMS Math, 2020, 5, 497- 506
doi: 10.3934/math.2020033 |
18 | Sadovskii B N . A fixed-point principle. Funct Anal Appl, 1967, 1, 151- 153 |
19 | Shao Y , Zhang H . Monotone iterative technique of periodic solutions for impulsive evolution equations in Banach space. J Comput Anal Appl, 2014, 17, 48- 58 |
20 | Shu X , Shi Y . A study on the mild solution of impulsive fractional evolution equations. Appl Math Comput, 2016, 273, 465- 476 |
21 |
Wang J , Fečkan M , Zhou Y . On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn Partial Differ Equ, 2011, 8, 345- 361
doi: 10.4310/DPDE.2011.v8.n4.a3 |
22 |
Wang R , Chen D , Xiao T . Abstract fractional Cauchy problems with almost sectorial operators. Journal of Differential Equations, 2012, 252, 202- 235
doi: 10.1016/j.jde.2011.08.048 |
23 | Wang J , Zhou Y . A class of fractional evolution equations and optimal controls. Nonlinear Anal Real World Appl, 2011, 12, 263- 272 |
24 |
Wang J , Fečkan M , Zhou Y . Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations. Commun Nonlinear Sci, 2013, 18, 246- 256
doi: 10.1016/j.cnsns.2012.07.004 |
25 | Wu J . Theory and Applications of Partial Functional Differential Equations. Appl Math Sciences, Vol 119. New York: Springer, 1996 |
26 |
Xie S . Existence results of mild solutions for impulsive fractional integro-differential evolution equations with infinite delay. Fract Calc Appl Anal, 2014, 17, 1158- 1174
doi: 10.2478/s13540-014-0219-8 |
27 |
Zhang T , Xiong L . Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative. Appl Math Letters, 2020, 101, 106072
doi: 10.1016/j.aml.2019.106072 |
28 | Zhou Y . Basic Theory of Fractional Differential Equations. Singapore: World Scientific, 2014 |
29 | Zhou Y . Fractional Evolution Equations and Inclusions: Analysis and Control. New York: Elsevier, 2016 |
[1] | 杜保营,刘金兴. 部分耗散的三维不可压Hall-MHD方程组的整体正则性[J]. 数学物理学报, 2022, 42(6): 1754-1767. |
[2] | 邓楠,冯美强. 电报方程的正双周期解: 存在性、唯一性、多重性和渐近性[J]. 数学物理学报, 2022, 42(5): 1360-1380. |
[3] | 史诗洁,刘正荣,赵晖. 一类描述肿瘤入侵与具有信号依赖机制的趋化模型有界性与稳定性分析[J]. 数学物理学报, 2022, 42(2): 502-519. |
[4] | 唐童,牛聪. 量子Navier-Stokes方程弱解的全局存在性[J]. 数学物理学报, 2022, 42(2): 387-400. |
[5] | 赵童,袁海龙,郭改慧. 一类具有修正的Leslie-Gower项的捕食-食饵模型的正解[J]. 数学物理学报, 2022, 42(1): 176-186. |
[6] | 杨连峰,曾小雨. 拟相对论薛定谔方程基态解的存在性与爆破行为[J]. 数学物理学报, 2022, 42(1): 165-175. |
[7] | 杜玉阁,田书英. 一类带对数非线性项的抛物方程解的存在性和爆破[J]. 数学物理学报, 2021, 41(6): 1816-1829. |
[8] | 张再云,刘振海,邓又军. 具有时变时滞和速度相关材料密度的非线性粘弹性方程的整体存在性和一般衰减性[J]. 数学物理学报, 2021, 41(6): 1684-1704. |
[9] | 贾哲,杨作东. 带非线性扩散项和信号产生项的趋化-趋触模型解的整体有界性[J]. 数学物理学报, 2021, 41(5): 1382-1395. |
[10] | 钟澎洪,陈兴发. Landau-Lifshitz方程平面波解的全局光滑性[J]. 数学物理学报, 2021, 41(3): 729-739. |
[11] | 罗娇,漆前,罗宏. 高阶各向异性Cahn-Hilliard-Navier-Stokes系统的弱解[J]. 数学物理学报, 2020, 40(6): 1599-1611. |
[12] | 王娟,原子霞. 具有对数敏感度和混合边界的一维趋化模型解的整体存在性和收敛性[J]. 数学物理学报, 2020, 40(6): 1646-1669. |
[13] | 王胜华,马江山. 一类具结构化的细菌种群模型中出现的迁移算子的谱分析[J]. 数学物理学报, 2020, 40(4): 1083-1094. |
[14] | 黄小梦,张贻民. 一类修正Gross-Pitaevskii方程基态解的存在性[J]. 数学物理学报, 2020, 40(4): 850-856. |
[15] | 钱红丽,黄小涛. 一类p-Laplacian方程解的存在性与对称性研究[J]. 数学物理学报, 2020, 40(3): 725-734. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 134
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 94
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|