Processing math: 78%

数学物理学报, 2022, 42(5): 1281-1293 doi:

论文

一类上三角算子矩阵的相似性与酉相似性

林丽琼,1, 阙佳华,2, 张云南,2

1 福州大学数学与统计学院 福州 350117

2 福建师范大学数学与统计学院 福州 350108

Similarity and Unitary Similarity of a Class of Upper Triangular Operator Matrices

Lin Liqiong,1, Que Jiahua,2, Zhang Yunnan,2

1 School of Mathematics and Statistics, Fuzhou University, Fuzhou 350117

2 School of Mathematics and Statistics, Fujian Normal University, Fuzhou 350108

收稿日期: 2021-07-23  

基金资助: 国家自然科学基金.  11971108
福建省自然科学基金.  2020J01496

Received: 2021-07-23  

Fund supported: the NSFC.  11971108
the Natural Science Foundation of Fujian Province.  2020J01496

作者简介 About authors

林丽琼,llq141141@163.com , E-mail:llq141141@163.com

阙佳华,1925817302@qq.com , E-mail:1925817302@qq.com

张云南,zyn126126@163.com , E-mail:zyn126126@163.com

Abstract

This paper introduces a class of upper triangular operator matrices related to Cowen-Douglas operators, and studies its similarity on Banach spaces and its unitary similarity on Hilbert spaces.

Keywords: Banach spaces ; Hilbert spaces ; Upper triangular operator matrices ; Similarity ; Unitary similarity

PDF (268KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

林丽琼, 阙佳华, 张云南. 一类上三角算子矩阵的相似性与酉相似性. 数学物理学报[J], 2022, 42(5): 1281-1293 doi:

Lin Liqiong, Que Jiahua, Zhang Yunnan. Similarity and Unitary Similarity of a Class of Upper Triangular Operator Matrices. Acta Mathematica Scientia[J], 2022, 42(5): 1281-1293 doi:

1 引言与预备知识

Cowen和Douglas[1]在Hilbert空间上引入并研究一类重要算子—Cowen-Douglas算子. Cowen-Douglas算子是根据全纯向量丛定义的, 这是首次应用复几何研究算子理论. 此后, Cowen-Douglas算子得到了广泛且深入的研究, 特别是这类算子的相似性与酉相似性取得了丰硕的成果[2-10]. Ji等[3]在Hilbert空间上引入了一类用上三角算子矩阵表示的Cowen-Douglas算子, 并研究其强不可约性. 本文作者[9]在Banach空间上研究这类Cowen-Douglas算子的强不可约性. Hou和Ji[2]在Hilbert空间上研究形如(T1A12T2T1A120T2)2×2上三角算子矩阵的酉相似性. 本文引入类似的n×n上三角算子矩阵, 并在Banach空间上研究其相似性, 在Hilbert空间上研究其酉相似性.

首先回顾一些符号和定义. 设X,Y是Banach空间, 以B(X,Y)表示从XY的所有有界线性算子全体, B(X,X)简记为B(X). X上的恒等算子记为IX, 简记为I.TB(X,Y), 以kerTranT分别表示T的零空间kerT:={xX:Tx=0}与值域ranT:={Tx:xX}. X的子集A的线性张闭包记为¯spanA.TB(X,Y), 若存在SB(Y,X), 使得TS=IY, ST=IX, 则称T可逆, 若只有TS=IY成立, 则称T右可逆. 分别以G(X)Gr(X)表示B(X)中的可逆算子全体与右可逆算子全体.

定义1.1   设X是Banach空间, T,SB(X), 若存在可逆算子UB(X), 使得UT=SU, 则称TS相似.

定义1.2   设H是Hilbert空间, T,SB(H), 若存在酉算子UB(H), 即UU=UU=I, 使得UT=SU, 则称TS酉相似.

定义1.3   设X,Y是Banach空间, TB(X), SB(Y), Rosenblum算子τT,S定义为

τT,S:B(Y,X)B(Y,X):τT,S(A)=TAAS, AB(Y,X).

定义1.4   设X是Banach空间, Ω是复平面上的一个非空连通开集, n是正整数, TB(X). 若对任意ωΩ, 有dimker(Tω)=n, ran(Tω)=X, 且¯span{ker(Tω):ωΩ}=X, 则称TΩ上指标为n的Cowen-Douglas算子, 记为TBn(Ω)(X).

本文研究如下一类上三角算子矩阵.

定义1.5   设X是Banach空间且有直和分解X=X1X2Xn, 考虑如下类型的算子TB(X)

T=(T1T12T1nT2Tn1,n0Tn),

其中TiB(Xi), 1in; Tij=AijTjTiAij, AijB(Xj,Xi), 1i<jn.

Tij=0 (1i<jn)时, 记上述算子TT=T1T2Tn.

为了方便, 有时也记TiTii.

2 主要结果与证明

首先在Banach空间上研究定义1.5中算子的相似性.

定理2.1   设Banach空间X与算子TB(X)如定义1.5, 若AijAjk=0, AijTjAjk=0 (1i<j<kn), 则TT1T2Tn相似.

  对1i<j<kn, 由于AijAjk=0, AijTjAjk=0, 则

AijTjk=AijAjkTkAijTjAjk=0,

TijAijTj=AijTjTiAijAijTj=TiAij.

U=(IA12A1nIAn1,n0I),V=(IA12A1nIAn1,n0I),U,VB(X)

UV=(I0A12A23n1i=2A1iAinI0An2,n1An1,n00I)=I.

同理可证VU=I, 即U可逆. 又由于

UT=(T1T12A12T2T13A12T23A13T3T1nni=2A1iTinT2T23A23T3Tn2,nAn2,n1Tn1,nAn2,nTnTn1,nAn1,nTn0Tn)=(T1T1A12T1A13T1A1nT2T2A23Tn2An2,nTn1An1,n0Tn)=(T1T2Tn)U,

TT1T2Tn相似. 证毕.

推论2.1   设Banach空间X与算子TB(X)如定义1.5, 且定义1.5中的n=2, 则TT1T2相似.

引理2.1   设Banach空间X与算子TB(X)如定义1.5, 满足kerτTi,Tj={0} (1j<in). 若存在U=(Uij)n×nB(X), 使得UT=(T1T2Tn)U, 则Uij满足

(1) Uij=0 (1j<in),

(2) UiikerτTi,Ti (1in),

(3) Ui,i+1+UiiAi,i+1kerτTi,Ti+1 (1i<n1),

(4) j1m=i+1UimTmj=τTi,Tj(Uij+UiiAij) (1i<j1n1).

  记UT=(T1T2Tn)U=(Vij)n×n.

1<in, 由于Vi1=Ui1T1=TiUi1, 则Ui1kerτTi,T1={0}, 即Ui1=0. 此时对2<in, 有Vi2=Ui2T2=TiUi2, 则Ui2kerτTi,T2={0}, 即Ui2=0. 递推可得: 对1j<in, 有Uij=0.

1in, 由于Vii=UiiTi=TiUii, 则UiikerτTi,Ti.

1i<jn, 有

Vij=jm=iUimTmj=TiUij.

特别地, 对1i<n1, 有

Vi,i+1=UiiTi,i+1+Ui,i+1Ti+1=TiUi,i+1.

由于

UiiTi,i+1=Uii(Ai,i+1Ti+1TiAi,i+1)=UiiAi,i+1Ti+1UiiTiAi,i+1=UiiAi,i+1Ti+1TiUiiAi,i+1,

(UiiAi,i+1+Ui,i+1)Ti+1=UiiAi,i+1Ti+1+Ui,i+1Ti+1=TiUi,i+1+TiUiiAi,i+1=Ti(Ui,i+1+UiiAi,i+1).

Ui,i+1+UiiAi,i+1kerτTi,Ti+1.

1i<j1n1, 有

Vij=UiiTij+j1m=i+1UimTmj+UijTj=TiUij.

由于UiiTij=Uii(AijTjTiAij)=UiiAijTjUiiTiAij=UiiAijTjTiUiiAij, 则

j1m=i+1UimTmj=TiUij+TiUiiAijUijTjUiiAijTj=Ti(Uij+UiiAij)(Uij+UiiAij)Tj=τTi,Tj(Uij+UiiAij).

证毕.

定理2.2   设Banach空间X与算子TB(X)如定义1.5, 满足kerτTi,Tj={0} (1j<in), kerτTi,TiGr(Xi)G(Xi) (1in), 则TT1T2Tn相似当且仅当存在UijB(Xj,Xi) (1ijn), 满足

(1) UiikerτTi,TiG(Xi) (1in),

(2) Ui,i+1+UiiAi,i+1kerτTi,Ti+1 (1i<n1),

(3) j1m=i+1UimTmj=τTi,Tj(Uij+UiiAij) (1i<j1n1).

  “”: 由TT1T2Tn相似可知: 存在可逆算子U=(Uij)n×nB(X), 使得UT=(T1T2Tn)U. 首先由引理2.1可得(2) (3)成立, 且

Uij=0 (1j<in),  UiikerτTi,Ti (1in).

U1=B=(Bij)n×nB(X), 则UB=BU=I.UB=(Wij)n×n=I, 则

I=Wnn=UnnBnn,

UnnGr(Xn), 故UnnkerτTn,TnGr(Xn), 所以UnnG(Xn). 此时对1in1, 有0=Wni=UnnBni,Bni=0.

I=Wn1,n1=Un1,n1Bn1,n1+Un1,nBn,n1=Un1,n1Bn1,n1,

Un1,n1Gr(Xn1), 故Un1,n1kerτTn1,Tn1Gr(Xn1), 所以Un1,n1G(Xn1). 递推可得UiiG(Xi) (1in). 即(1)成立.

"": 令U=(Uij)n×nB(X), 其中Uij=0 (1j<in), Uij满足条件(1)–(3) (1ijn). 由于UiiG(Xi) (1in), 则U可逆.

UT=(Vij)n×n, (T1T2Tn)U=(Wij)n×n, 则

Vij=j1m=1UimTmj+UijTj,  Wij=TiUij.

由于Uij=0 (1j<in), 则当1j<in时, 则Vij=0=Wij.1ijn时,

Vij=j1m=iUimTmj+UijTj,  Wij=TiUij.

1i=jn时, 由于UiikerτTi,Ti, 即UiiTi=TiUii, 则Vij=Wij.1in1, j=i+1时, 由于Ui,i+1+UiiAi,i+1kerτTi,Ti+1, 则(Ui,i+1+UiiAi,i+1)Ti+1=Ti(Ui,i+1+UiiAi,i+1), 结合UiiTi=TiUii可得

Vi,i+1=UiiTi,i+1+Ui,i+1Ti+1=Uii(Ai,i+1Ti+1TiAi,i+1)+Ui,i+1Ti+1=UiiAi,i+1Ti+1TiUiiAi,i+1+Ui,i+1Ti+1=TiUi,i+1=Wi,i+1.

1i<j1n1时, 由于j1m=i+1UimTmj=τTi,Tj(Uij+UiiAij), 则

j1m=i+1UimTmj=Ti(Uij+UiiAij)(Uij+UiiAij)Tj.

结合UiiTi=TiUii可得

Vij=UiiTij+j1m=i+1UimTmj+UijTj=Uii(AijTjTiAij)+Ti(Uij+UiiAij)(Uij+UiiAij)Tj+UijTj=TiUiiAij+TiUij+TiUiiAij=TiUij=Wij.

综上, UT=(Vij)n×n=(Wij)n×n=(T1T2Tn)U.TT1T2Tn相似.

下面在Hilbert空间上研究一类更特殊的上三角算子矩阵(除了主对角线和副对角线上的算子可以不为零外, 其他位置上的算子均为零)的酉相似性. 只给出3阶算子矩阵和4阶算子矩阵的结果, n阶算子矩阵也有类似的结果, 这里从略.

定理2.3   设H是Hilbert空间且有直和分解H=H1H2H3, T,SB(H)有如下表示T=(T10A13T3T1A130T2000T3),S=(S10B13S3S1B130S2000S3),满足T3B1(Ω)(H3), S1B1(Ω)(H1), 且kerτT1,S1={0}, kerτT2,Si=kerτS2,Ti={0}(i=1,3), kerτS3,T3={0}.TS酉相似当且仅当存在酉算子U22kerτS2,T2以及可逆算子U13B(H3,H1), U31B(H1,H3)满足

(1) I+A13A13=(U31U31)1, I+A13A13=(U13U13)1,

(2) U31T1U131=S3, (U13)1T3U13=S1,

(3) U13A13U131B13kerτS1,S3.

  "": 由于TS酉相似, 则存在酉算子U=(Uij)3×3B(H)使得UT=SU, 则TU=UUTU=USUU=US.

(U11U12U13U21U22U23U31U32U33)(T10A13T3T1A130T2000T3)=(S10B13S3S1B130S2000S3)(U11U12U13U21U22U23U31U32U33)

(T10A13T3T1A130T2000T3)(U11U21U31U12U22U32U13U23U33)=(U11U21U31U12U22U32U13U23U33)(S10B13S3S1B130S2000S3).

(U11T1U12T2U11(A13T3T1A13)+U13T3U21T1U22T2U21(A13T3T1A13)+U23T3U31T1U32T2U31(A13T3T1A13)+U33T3)=(S1U11+(B13S3S1B13)U31S1U12+(B13S3S1B13)U32S1U13+(B13S3S1B13)U33S2U21S2U22S2U23S3U31S3U32S3U33)

(T1U11+(A13T3T1A13)U13T1U21+(A13T3T1A13)U23T1U31+(A13T3T1A13)U33T2U12T2U22T2U32T3U13T3U23T3U33)=(U11S1U21S2U11(B13S3S1B13)+U31S3U12S1U22S2U12(B13S3S1B13)+U32S3U13S1U23S2U13(B13S3S1B13)+U33S3).

由上两式可得

U11T1=S1U11+(B13S3S1B13)U31,
(2.1)

U21T1=S2U21,  T2U12=U12S1,  U22T2=S2U22,
(2.2)

U21(A13T3T1A13)+U23T3=S2U23,  T2U32=U12(B13S3S1B13)+U32S3,
(2.3)

U31T1=S3U31,  U31(A13T3T1A13)+U33T3=S3U33,
(2.4)

T1U11+(A13T3T1A13)U13=U11S1,  T3U13=U13S1.
(2.5)

由(2.2)式可得U22kerτS2,T2. 由于kerτS2,T1=kerτT2,S1={0}, 由(2.2)式可得U21=U12=0. 此时(2.3)式化为U23T3=S2U23, T2U32=U32S3. 由于kerτS2,T3=kerτT2,S3={0}, 则U23=U32=0, 故U12=0, U32=0. 由(2.4)式和(2.5)式可得

U31A13T3S3U31A13+U33T3=U31A13T3U31T1A13+U33T3=S3U33,

T1U11+A13U13S1T1A13U13=T1U11+A13T3U13T1A13U13=U11S1,

(U31A13+U33)T3=U31A13T3+U33T3=S3U33+S3U31A13=S3(U33+U31A13),

T1(U11A13U13)=T1U11T1A13U13=U11S1A13U13S1=(U11A13U13)S1.

由于kerτS3,T3={0}, kerτT1,S1={0}, 则U33+U31A13=0, U11A13U13=0, 即U33=U31A13, U11=A13U13, 则U11=U13A13. 此时

U=(U13A130U130U220U310U31A13),U=(A13U130U310U220U130A13U31),

UU=(U13A13A13U13+U13U13)(U22U22)(U31U31+U31A13A13U31),

UU=(A13U13U13A13+U31U310A13U13U13U31U31A130U22U220U13U13A13A13U31U310U13U13+A13U31U31A13).

由于UU=UU=I, 则U22U22=U22U22=I, 即U22是酉算子, 且有如下等式

U13(I+A13A13)U13=U13A13A13U13+U13U13=I,
(2.6)

A13U13U13A13+U31U31=I, U13U13+A13U31U31A13=I, A13U13U13=U31U31A13.
(2.7)

由(2.6)式可得U13(I+A13A13)是满射. 由于T3B1(Ω)(H3), S1B1(Ω)(H1), 由(2.5)式与文献[9, 命题2.3]可得¯ranU13=H3, 进而由(2.6)式可得U13(I+A13A13)是单射(事实上, 若有yH3, 使得U13(I+A13A13)y=0, 则存在xnH1, 使得U13xny, 故xn=U13(I+A13A13)U13xnU13(I+A13A13)y=0, 所以U13xn0, 因此y=0).U13(I+A13A13)可逆. 因此U13=(U13(I+A13A13))1可逆, 故U13可逆. 所以I+A13A13可逆. 由于σ(A13A13){0}=σ(A13A13){0}, 则I+A13A13可逆. 由(2.7)式可得

U31U31(I+A13A13)=U31U31A13A13+U31U31=A13U13U13A13+U31U31=I,

(I+A13A13)U13U13=U13U13+A13A13U13U13=U13U13+A13U31U31A13=I,

U31U31可逆, 由于U31(I+A13A13)U31=U31U31+U31A13A13U31=I,U31U31均可逆, 且有

I+A13A13=(U31U31)1,  I+A13A13=(U13U13)1.

再由(2.4)式和(2.5)式可得

U31T1U131=S3,  (U13)1T3U13=S1.

由(2.1)式和(2.4)式可得

U11U131S3U31B13S3U31=U11U131U31T1B13S3U31=U11T1B13S3U31=S1U11S1B13U31.

上式两边同时右乘U131可得

(U11U131B13)S3=U11U131S3B13S3=S1U11U131S1B13=S1(U11U131B13).

U13A13U131B13=U11U131B13kerτS1,S3.

"": 令U=(U13A130U130U220U310U31A13),U=(A13U130U310U220U130A13U31).

由(1)可得I+A13A13=U131(U31)1, I+A13A13=U113(U13)1, 则

U13A13A13U13+U13U13=U13(I+A13A13)U13=I,
(2.8)

U31U31+U31A13A13U31=U31(I+A13A13)U31=I.

由于(I+A13A13)A13=A13(I+A13A13), 则A13(I+A13A13)1=(I+A13A13)1A13. 由(1)可得

A13U13U13=U31U31A13,

U13U13A13=A13U31U31.

A13U13U13A13+U31U31=U31U31A13A13+U31U31=U31U31(I+A13A13)=I,

U13U13+A13U31U31A13=U13U13+U13U13A13A13=U13U13(I+A13A13)=I.

又由于U22是酉算子, 即U22U22=U22U22=I, 则

UU=(U13A13A13U13+U13U13)(U22U22)(U31U31+U31A13A13U31)=I,

UU=(A13U13U13A13+U31U310A13U13U13U31U31A130U22U220U13U13A13A13U31U310U13U13+A13U31U31A13)=I.

所以U是酉算子. 此时

UT=(U13A13T10U13A13(A13T3T1A13)+U13T30U22T20U31T10U31(A13T3T1A13)U31A13T3),

SU=(S1U13A13+(B13S3S1B13)U310S1U13(B13S3S1B13)U31A130S2U220S3U310S3U31A13).

由于U22kerτS2,T2, 则

U22T2=S2U22.

由(2)可得

U31T1=S3U31,

U31(A13T3T1A13)U31A13T3=U31A13T3U31T1A13U31A13T3=S3U31A13.

由(3)可得(U13A13U131B13)S3=S1(U13A13U131B13), 又T1U131=U131S3, 则

U13A13T1U131B13S3=U13A13U131S3B13S3=S1U13A13U131S1B13.

上式两边同时右乘U31可得

U13A13T1B13S3U31=S1U13A13S1B13U31,

U13A13T1=S1U13A13+B13S3U31S1B13U31=S1U13A13+(B13S3S1B13)U31.

由上式可得

(B13S3S1B13)U31=U13A13T1S1U13A13.
(2.9)

由(2.8)式可得

(U13A13A13+U13)U13S1=(U13A13A13U13+U13U13)S1=S1=S1(U13A13A13U13+U13U13)=S1(U13A13A13+U13)U13.

上式两边同时右乘(U13)1, 结合(1)可得

U13A13A13T3+U13T3=(U13A13A13+U13)T3=(U13A13A13+U13)U13S1(U13)1=S1(U13A13A13+U13)=S1U13A13A13+S1U13.

上式两边同时减去U13A13T1A13, 结合(2.9)式可得

U13A13(A13T3T1A13)+U13T3=U13A13A13T3U13A13T1A13+U13T3=S1U13A13A13+S1U13U13A13T1A13=S1U13(U13A13T1S1U13A13)A13=S1U13(B13S3S1B13)U31A13.

综上可得UT=SU, 故TS酉相似.证毕.

定理2.4   设H是Hilbert空间且有直和分解H=H1H2H3H4, T,SB(H)有如下表示

T=(T100A14T4T1A140T2A23T3T3A23000T30000T4), S=(S100B14S4S1B140S2B23S3S3B23000S30000S4),

满足TiB1(Ω)(Hi) (i=3,4), SiB1(Ω)(Hi) (i=1,2), 且kerτTi,Si={0} (i=1,2), kerτT3,Si=kerτS3,Ti={0} (i=1,4), kerτTi,S2=kerτSi,T2={0} (i=1,4), kerτSi,Ti={0} (i=3,4).TS酉相似当且仅当存在可逆算子UijB(Hj,Hi) (ij=14,23,41,32), 满足

(1) I+AijAij=(UjiUji)1, I+AijAij=(UijUij)1 (ij=14,23),

(2) UjiTiU1ji=Sj (ji=41,32), (Uij)1TjUij=Si (ij=14,23),

(3) UijAijU1jiBijkerτSi,Sj (ij=14,23).

  记T14=A14T4T1A14, T23=A23T3T3A23, S14=B14S4S1B14, S23=B23S3S3B23.

"": 由于TS酉相似, 则存在酉算子U=(Uij)4×4B(H)使得UT=SU, 则TU=UUTU=USUU=US.

(U11U12U13U14U21U22U23U24U31U32U33U34U41U42U43U44)(T100T140T2T23000T30000T4)=(S100S140S2S23000S30000S4)(U11U12U13U14U21U22U23U24U31U32U33U34U41U42U43U44)

(T100T140T2T23000T30000T4)(U11U21U31U41U12U22U32U42U13U23U33U43U14U24U34U44)=(U11U21U31U41U12U22U32U42U13U23U33U43U14U24U34U44)(S100S140S2S23000S30000S4).

(U11T1U12T2U12T23+U13T3U11T14+U14T4U21T1U22T2U22T23+U23T3U21T14+U24T4U31T1U32T2U32T23+U33T3U31T14+U34T4U41T1U42T2U42T23+U43T3U41T14+U44T4)=(S1U11+S14U41S1U12+S14U42S1U13+S14U43S1U14+S14U44S2U21+S23U31S2U22+S23U32S2U23+S23U33S2U24+S23U34S3U31S3U32S3U33S3U34S4U41S4U42S4U43S4U44)

(T1U11+T14U14T1U21+T14U24T1U31+T14U34T1U41+T14U44T2U12+T23U13T2U22+T23U23T2U32+T23U33T2U42+T23U43T3U13T3U23T3U33T3U43T4U14T4U24T4U34T4U44)=(U11S1U21S2U21S23+U31S3U11S14+U41S4U12S1U22S2U22S23+U32S3U12S14+U42S4U13S1U23S2U23S23+U33S3U13S14+U43S4U14S1U24S2U24S23+U34S3U14S14+U44S4).

由上两式可得

U31T1=S3U31,  T3U13=U13S1,  U42T2=S4U42,  T4U24=U24S2,
(2.10)

U12T2=S1U12+S14U42,  T1U21+T14U24=U21S2,
(2.11)

U31T14+U34T4=S3U34,  T3U43=U13S14+U43S4,
(2.12)

U41T1=S4U41,  U41T14+U44T4=S4U44,
(2.13)

T1U11+T14U14=U11S1,  T4U14=U14S1,
(2.14)

U32T2=S3U32,  U32T23+U33T3=S3U33,
(2.15)

T2U22+T23U23=U22S2,  T3U23=U23S2,
(2.16)

\begin{equation} U_{11}T_1=S_1U_{11}+S_{14}U_{41}\ \ U_{22}T_2=S_2U_{22}+S_{23}U_{32}. \end{equation}
(2.17)

由于 \ker \tau_{S_3, T_1}=\ker \tau_{T_3, S_1}=\{0\} , \ker \tau_{S_4, T_2}=\ker \tau_{T_4, S_2}=\{0\} , 由(2.10)式可得 U_{31}=U_{13}^*=0 , U_{42}=U_{24}^*=0 . 此时(2.11)式和(2.12)式分别化为 U_{12}T_2=S_1U_{12} , T_1U_{21}^*=U_{21}^*S_2 U_{34}T_4=S_3U_{34} , T_3U_{43}^*=U_{43}^*S_4 . 由于 \ker \tau_{S_1, T_2}=\ker \tau_{T_1, S_2}=\{0\} , \ker \tau_{S_3, T_4}=\ker \tau_{T_3, S_4}=\{0\} , 则 U_{12}=U_{21}^*=0 , U_{34}=U_{43}^*=0 , 故 U_{13}=0 , U_{24}=0 , U_{21}=0 , U_{43}=0 . 由(2.13)–(2.16)式, 及 \ker \tau_{T_i, S_i}=\{0\} ( i=1, 2 ), \ker \tau_{S_i, T_i}=\{0\} ( i=3, 4 ), 类似定理2.3的证明可证得 U_{11}=U_{14}A_{14}^* , U_{22}=U_{23}A_{23}^* , U_{33}=-U_{32}A_{23} , U_{44}=-U_{41}A_{14} . 此时

U={\left( \begin{array}{cccc} U_{14}A_{14}^* & 0 & 0 & U_{14} \\ 0 & U_{23}A_{23}^* & U_{23} & 0 \\ 0 & U_{32} & -U_{32}A_{23} & 0 \\ U_{41} & 0 & 0 & -U_{41}A_{14} \end{array}\right )}, \ U^*={\left( \begin{array}{cccc} A_{14}U_{14}^* & 0 & 0 & U_{41}^* \\ 0 & A_{23}U_{23}^* & U_{32}^* & 0 \\ 0 & U_{23}^* & -A_{23}^*U_{32}^* & 0 \\ U_{14}^* & 0 & 0 & -A_{14}^*U_{41}^* \end{array}\right )},

UU^*=P_{14}\oplus P_{23}\oplus Q_{32}\oplus Q_{41},

U^*U= \left( \begin{array}{cccc} \begin{array}{c} A_{14}U_{14}^*U_{14}A_{14}^*\\ +U_{41}^*U_{41} \end{array} & 0 \ & 0 & \begin{array}{c}A_{14}U_{14}^*U_{14}\\ -U_{41}^*U_{41}A_{14} \end{array} \\ 0 & \begin{array}{c} A_{23}U_{23}^*U_{23}A_{23}^*\\ +U_{32}^*U_{32} \end{array} \ & \begin{array}{c} A_{23}U_{23}^*U_{23}\\ -U_{32}^*U_{32}A_{23} \end{array} & 0 \\ 0 &\begin{array}{c} U_{23}^*U_{23}A_{23}^* \\ -A_{23}^*U_{32}^*U_{32}\end{array} \ & \begin{array}{c} U_{23}^*U_{23}\\ +A_{23}^*U_{32}^*U_{32}A_{23}\end{array} & 0 \\ \begin{array}{c} U_{14}^*U_{14}A_{14}^*\\ -A_{14}^*U_{41}^*U_{41} \end{array} & 0 \ & 0 & \begin{array}{c} U_{14}^*U_{14}\\ +A_{14}^*U_{41}^*U_{41}A_{14} \end{array} \end{array}\right ),

其中 P_{ij}=U_{ij}A_{ij}^*A_{ij}U_{ij}^*+U_{ij}U_{ij}^* ( ij=14, 23 ), Q_{ij}=U_{ij}U_{ij}^*+U_{ij}A_{ji}A_{ji}^*U_{ij}^* ( ij=32, 41 .) 由于 UU^*=U^*U=I , 有如下等式

\begin{equation} U_{14}(I+A_{14}^*A_{14})U_{14}^*=P_{14}=I, \ \ U_{23}(I+A_{23}^*A_{23})U_{23}^*=P_{23}=I, \end{equation}
(2.18)

\begin{equation} A_{14}U_{14}^*U_{14}A_{14}^*+U_{41}^*U_{41}=I, \ U_{14}^*U_{14}+A_{14}^*U_{41}^*U_{41}A_{14}=I, \ A_{14}U_{14}^*U_{14}=U_{41}^*U_{41}A_{14}, \end{equation}
(2.19)

\begin{equation} A_{23}U_{23}^*U_{23}A_{23}^*+U_{32}^*U_{32}=I, \ U_{23}^*U_{23}+A_{23}^*U_{32}^*U_{32}A_{23}=I, \ A_{23}U_{23}^*U_{23}=U_{32}^*U_{32}A_{23}. \end{equation}
(2.20)

由(2.13)–(2.20)式, 及 T_i\in {\cal B}_1(\Omega)(H_i) ( i=3, 4 ), S_i\in {\cal B}_1(\Omega)(H_i) ( i=1, 2 ), 类似定理2.3的证明可证得 U_{ij} ( ij=14, 23, 41, 32 )可逆, 且满足

(1) I+A_{ij}A_{ij}^*=(U_{ji}^*U_{ji})^{-1} , I+A_{ij}^*A_{ij}=(U_{ij}^*U_{ij})^{-1} ( ij=14, 23 ),

(2) U_{ji}T_iU_{ji}^{-1}=S_j ( ji=41, 32 ), (U_{ij}^*)^{-1}T_jU_{ij}^*=S_i ( ij=14, 23 ),

(3) U_{ij}A_{ij}^*U_{ji}^{-1}-B_{ij}\in\ker \tau_{S_i, S_j} ( ij=14, 23 ).

" \Leftarrow ": 令

U={\left( \begin{array}{cccc} U_{14}A_{14}^* & 0 & 0 & U_{14} \\ 0 & U_{23}A_{23}^* & U_{23} & 0 \\ 0 & U_{32} & -U_{32}A_{23} & 0 \\ U_{41} & 0 & 0 & -U_{41}A_{14} \end{array}\right )},

U^*={\left( \begin{array}{cccc} A_{14}U_{14}^* & 0 & 0 & U_{41}^* \\ 0 & A_{23}U_{23}^* & U_{32}^* & 0 \\ 0 & U_{23}^* & -A_{23}^*U_{32}^* & 0 \\ U_{14}^* & 0 & 0 & -A_{14}^*U_{41}^* \end{array}\right )}.

类似定理2.3的证明可证得

P_{14}=U_{14}A_{14}^*A_{14}U_{14}^*+U_{14}U_{14}^*=I, \ \ Q_{41}=U_{41}U_{41}^*+U_{41}A_{14}A_{14}^*U_{41}^*=I,

P_{23}=U_{23}A_{23}^*A_{23}U_{23}^*+U_{23}U_{23}^*=I, \ \ Q_{32}=U_{32}U_{32}^*+U_{32}A_{23}A_{23}^*U_{32}^*=I,

A_{14}U_{14}^*U_{14}A_{14}^*+U_{41}^*U_{41}=I, \ \ U_{14}^*U_{14}+A_{14}^*U_{41}^*U_{41}A_{14}=I,

A_{14}U_{14}^*U_{14}=U_{41}^*U_{41}A_{14}, \ \ U_{14}^*U_{14}A_{14}^*=A_{14}^*U_{41}^*U_{41},

A_{23}U_{23}^*U_{23}A_{23}^*+U_{32}^*U_{23}=I, \ \ U_{23}^*U_{23}+A_{23}^*U_{32}^*U_{32}A_{23}=I,

A_{23}U_{23}^*U_{23}=U_{32}^*U_{32}A_{23}, \ \ U_{23}^*U_{23}A_{23}^*=A_{23}^*U_{32}^*U_{32}.

UU^*=P_{14}\oplus P_{23}\oplus Q_{32}\oplus Q_{41}=I,

U^*U= \left( \begin{array}{cccc} \begin{array}{c} A_{14}U_{14}^*U_{14}A_{14}^*\\ +U_{41}^*U_{41} \end{array} & 0 \ & 0 & \begin{array}{c} A_{14}U_{14}^*U_{14}\\ -U_{41}^*U_{41}A_{14} \end{array} \\ 0 & \begin{array}{c} A_{23}U_{23}^*U_{23}A_{23}^*\\ +U_{32}^*U_{32}\end{array} \ & \begin{array}{c} A_{23}U_{23}^*U_{23}\\ -U_{32}^*U_{32}A_{23} \end{array} & 0 \\ 0 & \begin{array}{c}U_{23}^*U_{23}A_{23}^*\\ -A_{23}^*U_{32}^*U_{32}\end{array}\ & \begin{array}{c} U_{23}^*U_{23}\\ +A_{23}^*U_{32}^*U_{32}A_{23}\end{array} & 0 \\ \begin{array}{c} U_{14}^*U_{14}A_{14}^*\\ -A_{14}^*U_{41}^*U_{41} \end{array} & 0 \ & 0 &\begin{array}{c} U_{14}^*U_{14}\\ +A_{14}^*U_{41}^*U_{41}A_{14}\end{array} \end{array}\right ) =I.

所以 U 是酉算子. 此时

UT={\left( \begin{array}{cccc} U_{14}A_{14}^*T_1 & 0 & 0 & U_{14}A_{14}^*T_{14}+U_{14}T_4 \\ 0 &\; \; U_{23}A_{23}^*T_2\; \; & U_{23}A_{23}^*T_{23}+U_{23}T_3 & 0 \\ 0 & U_{32}T_2 & U_{32}T_{23}-U_{32}A_{23}T_3 & 0 \\ U_{41}T_1 & 0 & 0 & U_{41}T_{14}-U_{41}A_{14}T_4 \end{array}\right )},

SU={\left( \begin{array}{cccc} S_1U_{14}A_{14}^*+S_{14}U_{41} & 0 & 0 & S_1U_{14}-S_{14}U_{41}A_{14} \\ 0 & \; S_2U_{23}A_{23}^*+S_{23}U_{32} \; & S_2U_{23}-S_{23}U_{32}A_{23} & 0 \\ 0 & S_3U_{32} & -S_3U_{32}A_{23} & 0 \\ S_4U_{41} & 0 & 0 & -S_4U_{41}A_{14} \end{array}\right )}.

类似定理2.3的证明可证得

U_{41}T_{14}-U_{41}A_{14}T_4=-S_4U_{41}A_{14}, \ \ U_{14}A_{14}^*T_1=S_1U_{14}A_{14}^*+S_{14}U_{41},

U_{41}T_1=S_4U_{41}, \ \ U_{14}A_{14}^*T_{14}+U_{14}T_4=S_1U_{14}-S_{14}U_{41}A_{14},

U_{32}T_{23}-U_{32}A_{23}T_3=-S_3U_{32}A_{23}, \ \ U_{23}A_{23}^*T_2=S_2U_{23}A_{23}^*+S_{23}U_{32},

U_{32}T_2=S_3U_{32}, \ \ U_{23}A_{23}^*T_{23}+U_{23}T_3=S_2U_{23}-S_{23}U_{32}A_{23},

UT=SU , 故 T S 酉相似.证毕.

参考文献

Cowen M J , Douglas R G .

Complex geometry and operator theory

Acta Math, 1978, 141, 187- 261

DOI:10.1007/BF02545748      [本文引用: 1]

Hou Y L, Ji K. On the operators which do not belongs to FB2(Ω). arXiv: 1801.01680v1

[本文引用: 2]

Ji K , Jiang C L , Keshari D K , Misra G .

Rigidity of the flag structure for operators a class of Cowen-Douglas operators

J Funct Anal, 2017, 272 (7): 2899- 2932

DOI:10.1016/j.jfa.2016.12.019      [本文引用: 1]

Jiang C L .

Similarity reducibility and approximation of Cowen-Douglas operators

J Operator Theory, 1994, 32, 77- 89

Jiang C L .

Similarity classification of Cowen-Douglas operators

Canad J Math, 2004, 56, 742- 775

DOI:10.4153/CJM-2004-034-8     

Jiang C L , Ji K .

Similarity classification of holomorphic curves

Adv Math, 2007, 215, 446- 468

DOI:10.1016/j.aim.2007.03.015     

Jiang C L, Wang Z Y. Strongly Irreducibility Operators on Hilbert Space. Harlow: Longman, 1998

Jiang C L , Wang Z Y . Structure of Hilbert Space Operators. Singapore: World Scientific Printers, 2006

Lin L Q , Zhang Y N .

The strongly irreducibility of a class of Cowen-Douglas operators on Banach spaces

Bull Austral Math Soc, 2016, 94 (3): 479- 488

DOI:10.1017/S0004972716000460      [本文引用: 2]

Zhang Y N , Zhong H J .

Strongly irreducible operators and Cowen-Douglas operators on c0, lp (1 ≤ p < ∞)

Front Math China, 2011, 6 (5): 987- 1001

DOI:10.1007/s11464-011-0141-x      [本文引用: 1]

/