1 |
Beatson R K , Dyn N . Multiquadric B-Splines. J Approx Theory, 1996, 87 (1): 1- 24
doi: 10.1006/jath.1996.0089
|
2 |
Black F , Scholes M . The pricing of options and corporate liabilities. J Polit Econ, 1973, 81 (3): 637- 654
doi: 10.1086/260062
|
3 |
Carr P , Wu L . The finite moment log stable process and option pricing. J Finance, 2003, 58 (2): 753- 777
doi: 10.1111/1540-6261.00544
|
4 |
Cartea Á . Derivatives pricing with marked point processes using tick-by-tick data. Quant Finance, 2013, 13 (1): 111- 123
doi: 10.1080/14697688.2012.661447
|
5 |
Cartea Á , Del-Castillo-Negrete D . Fractional diffusion models of option prices in markets with jumps. Physica A, 2006, 374 (2): 749- 763
|
6 |
Chen W , Xu X , Zhu S . Analytically pricing European-style options under the modified BlackScholes equation with a spatial-fractional derivative. Q Appl Math, 2014, 72 (3): 597- 611
doi: 10.1090/S0033-569X-2014-01373-2
|
7 |
Fasshauer G , Zhang J . On choosing "optimal" shape parameters for RBF approximation. Numer Algorithms, 2007, 45 (1/4): 345- 368
|
8 |
Fu Z , Reutskiy S , Sun H , et al. A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains. Appl Math Lett, 2019, 94, 105- 111
doi: 10.1016/j.aml.2019.02.025
|
9 |
Gao G , Sun Z , Zhang H . A new fractional numerical differention formula to approximate the Caputo fractional derivative and its applications. J Comput Phys, 2014, 259, 33- 50
doi: 10.1016/j.jcp.2013.11.017
|
10 |
Gao Q , Wu Z , Zhang S . Adaptive moving knots meshless method for simulating time dependent partial differential equations. Eng Anal Bound Elem, 2018, 96, 115- 122
doi: 10.1016/j.enganabound.2018.08.010
|
11 |
Jumarie G . Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time. Application to Merton's optimal portfolio. Comput Math With Appl, 2010, 59 (3): 1142- 1164
doi: 10.1016/j.camwa.2009.05.015
|
12 |
Liang J , Wang J , Zhang W , et al. The solutions to a bi-fractional Black-Scholes-Merton differential equation. Int J Pure Appl Math, 2010, 58 (1): 99- 112
|
13 |
Ma L , Wu Z . Approximation to the k-th derivatives by multiquadric quasi-interpolation method. J Comput Appl Math, 2009, 231 (2): 925- 932
doi: 10.1016/j.cam.2009.05.017
|
14 |
Wu Z , Schaback R . Shape preserving properties and convergence of univariate multiquadric quasi-interpolation. Acta Math Appl Sin, 1994, 10 (4): 441- 446
doi: 10.1007/BF02016334
|
15 |
Wyss W . The fractional Black-Scholes equation. Fract Calc Appl Anal, 2000, 3 (1): 51- 61
|
16 |
Zhang H , Liu F , Turner L , et al. Numerical solution of the time fractional Black-Scholes model governing European options. Comput Math With Appl, 2016, 71 (9): 1772- 1783
|
17 |
Zhang S , Yang H , Yang Y . A multiquadric quasi-interpolations method for CEV option pricing model. J Comput Appl Math, 2019, 347, 1- 11
|