1 |
Houyu J , Renhui W . Long time existence of classical solutions for the rotating Euler equations and related models in the optimal Sobolev space. Nonlinearity, 2020, 33 (8): 3763- 3780
doi: 10.1088/1361-6544/ab86cf
|
2 |
Fujita H , Kato T . On the Navier-Stokes initial value problem I. Arch Rational Mech Anal, 1964, 16, 269- 315
doi: 10.1007/BF00276188
|
3 |
Ibrahim S , Yoneda T . Long-time solvability of the Navier-Stokes-Boussinesq equations with almost periodic initial large data. J Math Sci Univ Tokyo, 2013, 20 (1): 1- 25
|
4 |
Hailong Y , Yan J . Long-time behaviors for the Navier-Stokes equations under large initial perturbation. Z Angew Math Phys, 2021, 72 (4): 136
doi: 10.1007/s00033-021-01569-9
|
5 |
Kato T . Nonstationary flows of viscous and ideal fluids in ${{\Bbb R}} ^{3} $. J Functional Analysis, 1972, 9, 296- 305
doi: 10.1016/0022-1236(72)90003-1
|
6 |
Kato T , Ponce G . Commutator estimates and the Euler and Navier-Stokes equations. Comm Pure Appl Math, 1988, 41 (7): 891- 907
doi: 10.1002/cpa.3160410704
|
7 |
Hieber M , Shibata Y . The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework. Math Z, 2010, 265 (2): 481- 491
doi: 10.1007/s00209-009-0525-8
|
8 |
Xiaochun S , Yong D . Dispersive effect of the Coriolis force and the local well-posedness for the Navier-Stokes-Coriolis system. J Evol Equ, 2020, 20 (2): 335- 354
doi: 10.1007/s00028-019-00531-7
|
9 |
Jiahong W . The generalized incompressible Navier-Stokes equations in Besov spaces. Dyn Partial Differ Equ, 2004, 1 (4): 381- 400
doi: 10.4310/DPDE.2004.v1.n4.a2
|
10 |
Babin A , Mahalov A , Nicolaenko B . On the regularity of three-dimensional rotating Euler-Boussinesq equations. Math Models Methods Appl Sci, 1999, 9 (7): 1089- 1121
doi: 10.1142/S021820259900049X
|
11 |
Koh Y , Lee S , Takada R . Strichartz estimates for the Euler equations in the rotating framework. J Differential Equations, 2014, 256 (2): 707- 744
doi: 10.1016/j.jde.2013.09.017
|