1 |
Alves C O , Corrêa F J S A , Figueiredo G . On a class of nonlocal elliptic problems with critical growth. Differ Equ Appl, 2010, 2 (3): 409- 417
|
2 |
Alves C O , Figueiredo G . Nonlinear perturbations of periodic Krichhoff equation in $ {\rm {{\Bbb R}} .{N}} $. Nonlinear Anal, 2012, 75 (5): 2750- 2759
doi: 10.1016/j.na.2011.11.017
|
3 |
Alves C O , Souto M A S . Existence of solutions for a class of nonlinear Schrodinger equations with potentials vanishing at infinitly. J Differential Equations, 2013, 254 (4): 1977- 1991
doi: 10.1016/j.jde.2012.11.013
|
4 |
Ambrosetti A , Felli V , Malchiodi A . Ground states of nonlinear Schrodinger equations with potentials vanishing at infinity. J Eur Math Soc, 2005, 7 (1): 117- 144
|
5 |
Arosio A , Panizzi S . On the well-posedness of the Kirchhoff string. Trans Amer Math Soc, 1996, 348 (1): 305- 330
doi: 10.1090/S0002-9947-96-01532-2
|
6 |
Bonheure D , Van Schaftingen J . Ground states for the nonlinear Schrodinger equation with potential vanishing at infinity. Ann Mat Pura Appl, 2010, 189 (2): 273- 301
doi: 10.1007/s10231-009-0109-6
|
7 |
Chen P , Liu X . Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Commun Pure Appl Anal, 2018, 17 (1): 113- 125
doi: 10.3934/cpaa.2018007
|
8 |
成艺群, 滕凯民. 非线性临界Kirchhoff型问题的正基态解. 数学物理学报, 2021, 41 (3): 666- 685
doi: 10.3969/j.issn.1003-3998.2021.03.008
|
|
Cheng Y , Teng K . Positive ground state solutions for nonlinear critical kirchhoff type problem. Acta Mathematica Scientia, 2021, 41 (3): 666- 685
doi: 10.3969/j.issn.1003-3998.2021.03.008
|
9 |
D'Ancona A , Spagnolo S . Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent Math, 1992, 108 (2): 247- 262
|
10 |
Faraci F , Farkas C . On a critical Kirchhoff-type problem. Nonlinear Anal, 2020, 192, 1- 14
|
11 |
Figueiredo G M , Santos Junior J R . Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth. Differential Integral Equations, 2012, 25 (9/10): 853- 868
|
12 |
Figueiredo G M . Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument. J Math Anal Appl, 2013, 401 (2): 706- 713
doi: 10.1016/j.jmaa.2012.12.053
|
13 |
Fiscella A , Valdinoci E . A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal, 2014, 94, 156- 170
doi: 10.1016/j.na.2013.08.011
|
14 |
Kirchhoff G . Vorlesungen über Mechanik. Leipzig: Teubner, 1883
|
15 |
Lions J L . On some questions in boundary value problems of mathematical physics. North-Holland Math Stud, 1978, 30, 284- 346
|
16 |
Liu Z , Guo S . On ground states for the Kirchhoh-type problem with a general critical nonlinearity. J Math Anal Appl, 2005, 426 (1): 267- 287
|
17 |
Naimen D . Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent. NoDEA Nonlinear Differential Equations Appl, 2014, 21 (6): 885- 914
|
18 |
Naimen D , Shibata M . Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension. Nonlinear Anal, 2019, 186, 187- 208
|
19 |
Willem W . Minimax Theorems. Boston: Birkhäuser, 1996
|
20 |
Zhong X , Tang C . Multiple positive solutions to a Kirchhoff type problem involving a critical nonlinearity in ${{\Bbb R}} .{3} $. Adv Nonlinear Stud, 2017, 17 (4): 661- 676
|