数学物理学报 ›› 2022, Vol. 42 ›› Issue (5): 1473-1481.

• 论文 • 上一篇    下一篇

压力项属于Triebel-Lizorkin空间的三维不可压Navier-Stokes方程的正则性准则

万雅琪(),陈晓莉*()   

  1. 江西师范大学数学与统计学院 南昌 330022
  • 收稿日期:2021-12-16 出版日期:2022-10-26 发布日期:2022-09-30
  • 通讯作者: 陈晓莉 E-mail:chen@163.com;yqwanjxnu@163.com
  • 作者简介:万雅琪, E-mail: littleli chen@163.com
  • 基金资助:
    国家自然科学基金(11971209);国家自然科学基金(11961032);江西省教育厅基金

Regularity Criterion for 3D Incompressible Navier-Stokes Equations via the Pressure in Triebel-Lizorkin Spaces

Yaqi Wan(),Xiaoli Chen*()   

  1. School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022
  • Received:2021-12-16 Online:2022-10-26 Published:2022-09-30
  • Contact: Xiaoli Chen E-mail:chen@163.com;yqwanjxnu@163.com
  • Supported by:
    the NSFC(11971209);the NSFC(11961032);the Foundation of Jiangxi Education Division

摘要:

该文研究了$ \mathbb{R}^3$中的Navier-Stokes方程弱解的正则性准则, 证明了当$ \pi\in L^p(0, T; $$\dot{F}_{q, \frac{10q}{5q+6}}^0(\mathbb{R}^3))$时Leray-Hopf弱解u是正则的, 其中$ \frac{2}{p}+\frac{3}{q}<\frac{7}{4}, \frac{12}{5}<q \leq \infty$同时还证明了当$\nabla\pi\in L^p(0, T;\dot{F}_{q, \frac{8q}{12-3q}}^0(\mathbb{R}^3)) $时, 弱解u能光滑的延拓出t=T, 其中$\frac{2}{p}+\frac{3}{q}=\frac{11}{4}, \frac{12}{11}<q<4 $.

关键词: Navier-Stokes方程, 爆破判别准则, Leray-Hopf弱解, Triebel-Lizorkin空间, 压力

Abstract:

In this paper, we consider the regularity criterion of weak solution to Navier-Stokes equations in $\mathbb{R}^3$. It is proved that a Leray-Hopf weak solution $u$ becomes a regular solution if the pressure $\pi\in L^p(0, T; \dot{F}_{q, \frac{10q}{5q+6}}^0(\mathbb{R}^3)) $ with $ \frac{2}{p}+\frac{3}{q}<\frac{7}{4}, \frac{12}{5}<q \leq \infty$. Meanwhile the authors also prove that if the gradient of the pressure $\nabla\pi\in L^p(0, T;\dot{F}_{q, \frac{8q}{12-3q}}^0(\mathbb{R}^3))$ with $\frac{2}{p}+\frac{3}{q}=\frac{11}{4}, \frac{12}{11}<q<4 $, then the weak solution u can be smoothly extended beyond t=T

Key words: avier-Stokes equations, Blow up criterion, Leray-Hopf weak solution, Triebel-Lizorkin spaces, Pressure

中图分类号: 

  • O175.26