数学物理学报 ›› 2022, Vol. 42 ›› Issue (5): 1332-1347.

• 论文 • 上一篇    下一篇

与由分数阶Laplace算子生成的热半群相关的微分变换算子的有界性

曹菁菁(),任新宇(),毕学文(),张超*()   

  1. 浙江工商大学 杭州 310018
  • 收稿日期:2021-06-23 出版日期:2022-10-26 发布日期:2022-09-30
  • 通讯作者: 张超 E-mail:caojj1207@163.com;renxinyuanhui@163.com;xuewen020696@163.com;zaoyangzhangchao@163.com
  • 作者简介:曹菁菁, E-mail: caojj1207@163.com|任新宇, E-mail: renxinyuanhui@163.com|毕学文, E-mail: xuewen020696@163.com
  • 基金资助:
    国家自然科学基金(11971431);浙江省自然科学基金(LY22A010011)

Boundedness of Differential Transforms for Heat Semigroups Generated by Fractional Laplacian

Jingjing Cao(),Xinyu Ren(),Xuewen Bi(),Chao Zhang*()   

  1. School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018
  • Received:2021-06-23 Online:2022-10-26 Published:2022-09-30
  • Contact: Chao Zhang E-mail:caojj1207@163.com;renxinyuanhui@163.com;xuewen020696@163.com;zaoyangzhangchao@163.com
  • Supported by:
    the NSFC(11971431);the Zhejiang NCF(LY22A010011)

摘要:

该文分析了如下类型无穷级数的收敛性 其中$\{e^{-t(-\Delta)^\alpha} \}_{t>0}$为由分数阶Laplace算子$(-\Delta)^\alpha$生成的热半群$(0<\alpha<1), $ $N=(N_1, N_2)\in {\Bbb Z}^2$ $(N_1<N_2), $ $\{v_j\}_{j\in {\Bbb Z}}$为有界实数列, $\{a_j\}_{j\in {\Bbb Z}}$为递增正数列. 该文给出了算子$T_N$和其极大算子$\displaystyle T^*f(x)= \sup_N |T_N f(x)|$$L^p$空间和$BMO$空间上的有界性, 从而得到该无穷级数的收敛性. 同时, 还给出了该微分变换算子的极大算子$\displaystyle T^*f(x)$的局部增长性估计.

关键词: 微分变换, 热半群, 分数阶拉普拉斯算子, 极大算子, 缺项数列

Abstract:

In this paper we analyze the convergence of the following type of series where $\{e^{-t(-\Delta)^\alpha} \}_{t>0}$ is the heat semigroup of the fractional Laplacian $(-\Delta)^\alpha, $ $N=(N_1, N_2)\in {\Bbb Z}^2$ with $N_1<N_2, $ $\{v_j\}_{j\in {\Bbb Z}}$ is a bounded real sequences and $\{a_j\}_{j\in {\Bbb Z}}$ is an increasing real sequence. Our analysis will consist in the boundedness, in $L^p(\mathbb{R} ^n)$ and in $BMO(\mathbb{R} ^n)$, of the operators $T_N$ and its maximal operator $\displaystyle T^*f(x)= \sup_N |T_N f(x)|.$ It is also shown that the local size of the maximal differential transform operators is the same with the order of a singular integral for functions $f$ having local support.

Key words: Differential transforms, Heat semigroup, Fractional Laplacian, Maximal operator, Lacunary sequence

中图分类号: 

  • O174