1 |
Bae H O , Choe H J . A regularity criterion for the Navier-Stokes equations. Commun Partial Differential Equations, 2007, 32, 1173- 1187
doi: 10.1080/03605300701257500
|
2 |
Bahouri H , Chemin J Y , Danchin R . Fourier Analysis and Nonlinear Partial Differential Equations. Heidelberg: Springer Berlin, 2011
|
3 |
Beiráo da Veiga H . A new regularity class for the Navier-Stokes equations in $\mathbb{R}^n$. Chinese Annals of Mathematics, 1995, 16, 407- 412
|
4 |
Berselli L C , Galdi G P . Regularity criterion involving the pressure for the weak solutions to the Navier-Stokes equations. Proc Amer Math Soc, 2002, 130, 3585- 3595
doi: 10.1090/S0002-9939-02-06697-2
|
5 |
Chae D , Lee J . Regularity criterion in terms of pressure for the Navier-Stokes equations. Nonlinear Anal TMA, 2001, 46, 727- 735
doi: 10.1016/S0362-546X(00)00163-2
|
6 |
Chemin J Y , Zhang P . On the critical one component regularity for 3D Navier-Stokes system. Ann Sci Ec Norm Supér, 2016, 49, 131- 167
doi: 10.24033/asens.2278
|
7 |
Chemin J Y , Zhang P , Zhang Z . On the critical one component regularity for 3D Navier-Stokes system: General case. Arch Ration Mech Anal, 2017, 224, 871- 905
doi: 10.1007/s00205-017-1089-0
|
8 |
Chen Q , Zhang Z . Regularity criterion via the pressure on weak solutions to the 3D Navier-Stokes equations. Proc Amer Math Soc, 2007, 135, 1829- 1837
|
9 |
Fang D , Qian C . The regularity criterion for 3D Navier-Stokes equations involving one velocity gradient component. Nonlinear Anal, 2013, 78, 86- 103
doi: 10.1016/j.na.2012.09.019
|
10 |
Giga Y . Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system. J Differentia Equations, 1986, 62, 186- 212
doi: 10.1016/0022-0396(86)90096-3
|
11 |
Hopf E . Ueber die anfangswertaufgbe für die hydrodynamischen grundgleichungen. Math Nachr, 1951, 4, 213- 231
|
12 |
Leray J . Sur le mouvement dún liquids visqeux emplissant léspace. Acta Math, 1934, 63, 193- 248
doi: 10.1007/BF02547354
|
13 |
Qian C . A generalized regularity criterion for 3D Navier-Stokes equations in terms of one velocity component. J Differential Equations, 2016, 260, 3477- 3494
doi: 10.1016/j.jde.2015.10.037
|
14 |
Serrin J . On the interior regularity of weak solutions of the Navier-Stokes equations. Arch Rational Mech Anal, 1962, 9, 187- 195
doi: 10.1007/BF00253344
|
15 |
Stein E M . Singular Integrals and Differentiability Properties of Functions. Princeton NJ: Princeton University Press, 1971
|
16 |
Zhou Y . On the regularity criteria in terms of pressure of the Navier-Stokes equations in $\mathbb{R}^3$. Proc Amer Math Soc, 2006, 134, 149- 156
|