该文运用对称山路引理研究一类拟线性椭圆方程组 $\left\{\begin{array}{ll} M\Big(\int_{\mathbb{R} ^{N}}(|\nabla u|^{p}+V(x)|u|^{p}){\rm d}x\Big)(-\Delta_{p}u+V(x)|u|^{p-2}u)=\sigma d^{-1}F_{u}(x, u, v)+\lambda|u|^{q-2}u, \nonumber\\ M\Big(\int_{\mathbb{R} ^{N}}(|\nabla v|^{p}+V(x)|v|^{p}){\rm d}x\Big)(-\Delta_{p}v+V(x)|v|^{p-2}v)=\sigma d^{-1}F_{v}(x, u, v)+\mu|v|^{q-2}v, \nonumber\\ u, v\in W^{1, p}(\mathbb{R} ^{N}), x\in\mathbb{R} ^{N}\nonumber \end{array}\right. $ 无穷多解的存在性,其中$M(s)=s^{k},k>0,N\geq3,p>1,p(k+1)<q\leq d<p^{\ast}\leq N$ (当$p<N$时,$p^{\ast}=\frac{Np}{N-p}$; 当$p=N$时,$p^{\ast}=\infty$),$\lambda, \mu>0, \sigma\in\mathbb{R} ^{N}$,权函数$V(x)\in C(\mathbb{R} ^N)$满足某些给定的条件.