数学物理学报, 2022, 42(3): 775-783 doi:

论文

约化的(3+1)维Hirota方程的呼吸波解、lump解和半有理解

房春梅,1, 田守富,2

1 集宁师范学院数学与统计学院 内蒙古乌兰察布 012000

2 中国矿业大学数学学院 江苏徐州 221116

Breather Wave Solutions, Lump Solutions and Semi-Rational Solutions of a Reduced (3+1)Dimensional Hirota Equation

Fang Chunmei,1, Tian Shoufu,2

1 Department of Mathematics and Statistics, Jining Normal University, Inner Mongolia Ulanqab 012000

2 Department of Mathematics, China University of Mining and Technology, Jiangsu Xuzhou 221116

通讯作者: 房春梅, E-mail: dllgfcmmxl@163.com

收稿日期: 2021-07-22  

基金资助: 国家自然科学基金.  11975306
内蒙古自治区高等学校科学研究项目.  NJZY20248
内蒙古自治区高等学校科学研究项目.  NJZY22307

Received: 2021-07-22  

Fund supported: the NSFC.  11975306
the Higher Educational Scientific Research Projects of Inner Mongolia Autonomous Region.  NJZY20248
the Higher Educational Scientific Research Projects of Inner Mongolia Autonomous Region.  NJZY22307

作者简介 About authors

田守富,E-mail:shoufu2006@126.com , E-mail:shoufu2006@126.com

Abstract

In this paper, the long wave limit method is used to study the exact solutions of the (3+1)dimensional Hirota equation under dimensional reduction $z$=$x$. First, the bilinear form is constructed by using Bell polynomials. Based on the bilinear form, the $n$-order breather wave solutions are obtained under some parameter constraints on the $N$-order soliton solution. Secondly, by using the long wave limit method, high order lump wave solutions are obtained. Finally, the combined solutions of the first-order, second-order lump wave solutions and single solitary wave solutions are derived, i.e. semi-rational solutions. All the obtained solutions were analyzed with Maple software for physical characteristics.

Keywords: The (3+1)dimensional Hirota equation ; Bilinear representation ; Breather solutions ; Lump wave solutions ; Semi-rational solutions

PDF (1085KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

房春梅, 田守富. 约化的(3+1)维Hirota方程的呼吸波解、lump解和半有理解. 数学物理学报[J], 2022, 42(3): 775-783 doi:

Fang Chunmei, Tian Shoufu. Breather Wave Solutions, Lump Solutions and Semi-Rational Solutions of a Reduced (3+1)Dimensional Hirota Equation. Acta Mathematica Scientia[J], 2022, 42(3): 775-783 doi:

1 引言

在许多物理问题, 以及天文学, 力学, 金融系统等领域, 我们经常遇到大量的非线性方程. 随着科学的不断发展, 对此类方程求出精确解问题受到人们的广泛关注. 目前已经有很多求精确解的方法[1-7], 其中Hirota双线性方法通常被认为是求解非线性方程组孤子解的一种简便而直接的方法. 近期, 马文秀教授提出了Hirota $ N $ -孤子条件, 用于检验微分方程的$ N $ -孤子解的存在性并将此方法应用于多个微分方程中, 其中包括(1+1) 维的广义KdV方程、高阶KdV方程以及(2+1)维的KdV方程、Kadomtsev-Petviashvili方程、Hirota-Satsuma-Ito方程和B-type Kadomtsev-Petviashvili方程等重要的微分方程[8-12]. Lump波解、呼吸波解在光学介质、等离子体和浅水波等非线性领域中都有广泛研究[13-15]. 上世纪70年代, Ablowitz和Satsuma两人提出长波极限思想, 用于求出非线性微分方程的有理解[16, 17]. 目前人们更关注lump解、呼吸波解以及它们之间的相互作用解[18-22]. 贺劲松课题组利用Kadomtsev-Petviashvili簇的约化方法获得了多个微分方程的双域二维怪波解[23-25]. 该课题组在利用长波极限思想研究呼吸波解、怪波解方面也做出了突出贡献[26]. 基于长波极限思想该文考虑了$ (3+1) $ -维Hirota方程[27, 28]

$ \begin{align} u_{ty}-u_{xxxy}-3(u_{x}u_{y})_{x}-3u_{xx}+3u_{zz}=0, \end{align} $

该方程是由KdV方程推广而得到, 可用于描述等离子体物理和流体力学中的非线性波. 对方程(1.1)人们已做了大量的工作. 在文献[27, 28]中得到了两个共振多波解, 孤立波解、呼吸波解和流氓波解. 文献[29]中, 得到了两种维数约化$ z=y $$ z=t $情况下的lump解. 对于维数约化$ z=x $情况的讨论较少, 只在文献[30]中, 讨论了$ z=x $情况下的lump解和可积性. 对于$ z=x $约化下, 方程(1.1)的高阶lump解, 半有理解还没有被讨论. 该文主要目的是利用长波极限方法构造方程(1.1) 在维数约化$ z=x $情况下的呼吸波解、lump波解和半有理解.

2 $ z=x $约化下的双线性形式

方程(1.1)在维数约化$ z=x $情况下, 化为

$ \begin{align} u_{ty}-u_{xxxy}-3u_{xx}u_{y}-3u_{x}u_{xy}=0, \end{align} $

为便于求出方程(2.1)的双线性形式, 对方程(2.1)中的变量$ u $做变换

其中$ \gamma $是任意常数[30], 则方程(2.1)转化为

$ \begin{align} v_{ty}-v_{xxxy}-3v_{xx}u_{y}-3v_{x}v_{xy}-3\gamma v_{xx}=0. \end{align} $

为了将上式转化成合适的$ P $ -多项式, 从而进一步获得其双线性形式, 考虑如下的变换

$ \begin{align} v=c(t)q_{x}, \end{align} $

其中$ c(t) $是待定的自由函数. 将(2.3)式代入(2.2)式, 并关于$ x $积分一次, 取$ c(t)=1 $, 可得到

$ \begin{align} E(q)=q_{yt}-q_{xxxy}-3q_{2x}q_{2xy}-3\gamma q_{2x}=0. \end{align} $

根据贝尔多项式相关理论, (2.4)式可以写成如下$ P $ -多项式形式

$ \begin{align} E(q)=P_{yt}(q)+P_{xxxy}(q)-3\gamma P_{2x}(Q)=0. \end{align} $

进一步, 在下面的变换下

可以得到方程(2.2)的双线性表示形式为

$ \begin{align} {\cal D}(D_{t}, D_{x}, D_{y})\equiv(D_{t}D_{y}-D_{x}^{3} D_{y}-3\gamma D_{x}^2)f\cdot f=0. \end{align} $

3 孤子解与呼吸波解

这一节, 先利用Hirota直接方法给出方程(1.1)的$ N $ -阶孤子解, 再对$ N $ -阶孤子解中的参数做某种约束获得$ n $ -阶呼吸波解. 利用经典的Hirota直接方法可以给出(2.6)式的$ N $ -阶孤子解表达式为

$ \begin{equation} v=2(\ln f_{N})_{x}, \end{equation} $

其中

$ \begin{equation} f_{N}=\sum\limits_{\rho=0, 1}{\rm exp} \bigg(\sum\limits_{j=1}^{N}\rho_{j}\eta_{j}+\sum\limits_{1\leq j<i\leq N}^{N}\rho_{i}\rho_{j}A_{ij}\bigg), \end{equation} $

$ \begin{equation} \eta_{j}=\mu_{j}(x+\nu_{j}y+(\mu_{j}^2+\frac{3\gamma}{\nu_{j}^{2}})t)+\eta_{j}^{0}, \end{equation} $

$ \mu_{j}, \nu_{j} $是自由参数, $ \eta_{j}^{0} $是相位常量, 而$ \sum\limits_{\rho=0, 1} $表示当$ \rho_{i}, \rho_{j} $$ (i, j=0, 1, 2, \cdots , N) $取遍$ 0, 1 $时所有可能的组合之和.

由文献[20]中所述, 对(3.2)和(3.3)式中取如下的参数约束, 可以获得方程(1.1)的$ n $ -阶呼吸波解

$ \begin{equation} N=2n, \quad\mu_{j}^{*}=\mu_{j+1}, \quad\nu_{j}^{*}=\mu_{j+1}, \quad\eta_{j}^{*}=\eta_{j+1}. \end{equation} $

下面取定适当参数来刻画$ N=2 $时的$ 1 $ -阶呼吸波解, 取

$ \begin{equation} \gamma=\frac{1}{3}, \quad\mu_{1}^{*}=\mu_{2}=-{\rm i}, \quad\nu_{1}^{*}=\mu_{2}=0.5-0.5{\rm i}, \quad\eta_{1}^{0}=\eta_{2}^{0}, \end{equation} $

则(3.2)式中$ f_{2} $可以相应地写成

$ \begin{eqnarray} f_{2}&=&1+2\sinh(3t-0.5y)\cos(-x-0.5y+4t){}\\ &&+2\cosh(0.5y+3t)\cos(-x-0.5y+4t)- 2\sinh(6t+y)+2\cosh(6t+y). \end{eqnarray} $

图 1刻画了方程(1.1)的呼吸波解在参数选择(3.5)式下的物理学特征. 从图 1不难发现, $ 1 $ -阶呼吸波解沿$ x $轴方向是周期性传播, 而$ y $轴方向是局域的. 图 1(c)刻画了$ t=0 $时分别在$ y=-3, y=0, y=3 $时沿$ x $轴的传播特征.

图 1

图 1   方程(1.1)的1-阶呼吸波解, 参数为(3.5)式. (a) $t=0$时的三维图, (b) 密度图, (c) $t=0$时, 分别在$y=-3$ (黑), $y=0$ (红), $y=3$ (蓝)时沿$x$轴的传播特征


4 Lump波解

本节, 利用长波极限方法获得方程(1.1)的高阶lump波解. 对(3.2)式中的相位参数取$ \exp(\eta_{j}^{0})=-1, (1\leq j\leq N) $, 并让$ \mu_{j}\rightarrow 0 $时, 可获得方程(1.1) 的高阶lump波解如下

$ \begin{equation} u=\gamma y+3(\ln f_{N})_{x}, \end{equation} $

其中

$ \begin{eqnarray} f_{N}&=&\prod\limits_{i=1}^{N}\theta_{i}+\frac{1}{2}\sum\limits_{i, j}^{N}A_{ij}\prod\limits_{\rho\ne i, j}^{N}\theta_{\rho}+\cdots{}\\ &&+\frac{1}{M!2^{M}}\times\sum\limits_{i, j, \cdots, m, l}^{N} \mathop{ \overbrace{A_{ij}A_{k\rho}\cdots A_{ml}}}\limits^M \times\prod\limits_{q\ne i, j, \cdots, m, l}\theta_{q}+\cdots, \end{eqnarray} $

$ \begin{equation} \theta_{i}=x+\frac{3\gamma}{\nu_{i}}t+\nu_{i}y, \quad A_{ij}=\frac{2\nu_{i}\nu_{j}(\nu_{i}+\nu_{j})}{\gamma(\nu_{i}-\nu_{j})^2}, \quad \gamma\ne0. \end{equation} $

值得注意的是为获得非奇异的lump波解, 参数$ \nu_{i} $之间满足$ \nu_{i}^{*}=\nu_{n+i} $$ (i=1, 2, \cdots, n), $并且要求是虚数.

4.1 1-阶lump解

为获得$ 1 $ -阶lump波解, 选取$ n=1, N=2 $, 则(4.2)式可以写成

$ \begin{equation} f_{2}=\theta_{1}\theta_{2}+A_{12}, \end{equation} $

其中

$ \begin{equation} A_{12}=\frac{2\nu_{1}\nu_{2}(\nu_{1}+\nu_{2})}{\gamma((\nu_{1}-\nu_{2})^2)}. \end{equation} $

在(4.5)式中对$ \nu_{1}, \nu_{2} $选取如下共轭形式

$ \begin{equation} \nu_{1}=\nu_{2}^{*}=\sigma_{R}+\sigma_{I}{\rm i}, \end{equation} $

则可以获得$ 1 $ -阶lump波解为

$ \begin{equation} v(x, y, t)=2(\ln f_{2})_{x}, \end{equation} $

其中

$ \begin{eqnarray} f_{2}&=&x^2+(\sigma_{R}^{2}+\sigma_{I}^2)y^2+\frac{9\gamma^2}{(\sigma_{R}^{2}+\sigma_{I}^2)}t^2+2\sigma_{I}xy+\frac{6\gamma(\sigma_{R}^{2}-\sigma_{I}^2)}{(\sigma_{R}^{2}+\sigma_{I}^2)}yt\\ &&+\frac{6\gamma\sigma_{R}}{(\sigma_{R}^{2}+\sigma_{I}^2)}xt-\frac{\sigma_{R}(\sigma_{R}^{2}+\sigma_{I}^2)}{\gamma\sigma_{I}^2}, \end{eqnarray} $

$ \sigma_{R}, \sigma_{I} $是任意实参数. 显然从$ f_{2} $的表示式可以看出, 求lump波解的方法与其他求lump波解的方法一样, 都是利用二次正定函数. 进一步, 可以得出$ 1 $ -阶lump波解移动的路径为

$ \begin{equation} x(t)=\frac{-6\gamma\sigma_{R}t}{(\sigma_{R}^{2}+\sigma_{I}^2)}, \quad y(t)=\frac{3\gamma t}{(\sigma_{R}^{2}+\sigma_{I}^2)}, \end{equation} $

$ 1 $ -阶lump波解沿着如下直线传播

$ \begin{equation} y=-\frac{x}{2\sigma_{R}}. \end{equation} $

图 2刻画了方程(1.1)的$ 1 $ -阶lump波解在适当参数下的物理学特征. 图 2(c)表示lump波随时间演化的过程, 即沿着蓝色直线$ y=-\frac{x}{2} $移动. 不难发现, 随着时间的演化lump波始终保持不变.

图 2

图 2   方程(1.1)的1-阶lump波解, 参数为$\sigma_{R}=\sigma_{I}=1, \gamma=-\frac{1}{3}$. (a) $t=0$时的三维图, (b) 密度图, (c)沿直线 $y=-\frac{x}{2}$传播的等高线图


4.2 2-阶lump解

$ n=2, N=4 $时可以获得$ 2 $ -阶lump波解, (4.2)式可以改写成如下形式

$ \begin{eqnarray} f_{4}&=&\theta_{1}\theta_{2}\theta_{3}\theta_{4}+A_{12}\theta_{3}\theta_{4}+A_{13}\theta_{2}\theta_{4}+A_{14}\theta_{2}\theta_{3}+A_{23}\theta_{1}\theta_{4}{}\\ &&+A_{24}\theta_{1}\theta_{3}+A_{34}\theta_{1}\theta_{2}+A_{12}A_{34}+A_{13}A_{24}+A_{14}A_{23}, \end{eqnarray} $

其中

$ \begin{equation} \theta_{i}=x+\frac{3\gamma}{\nu_{i}}t+\nu_{i}y, \quad A_{ij}=\frac{2\nu_{i}\nu_{j}(\nu_{i}+\nu_{j})}{\gamma(\nu_{i}-\nu_{j})^2}, \quad \gamma\ne0, \end{equation} $

从而有

其中$ \sigma_{R}, \sigma_{I}, \omega_{R}, \omega_{I} $均是实参数.

图 3刻画了方程(1.1)的$ 2 $ -阶lump波在适当参数下的物理学特征. 从图 3可以验证, 随着时间的演化, $ 2 $ -阶lump波的波峰和形状一直保持相对稳定.

图 3

图 3   方程(1.1)的$2$ -阶lump波解, 参数为: $\sigma_{R}=\sigma_{I}=1, \gamma=-2, \omega_{R}=0.5, \omega_{I}=1.5$. (a) $t=-10, $ (b) $t=0$, (c) $t=10$


5 半有理解

这一节, 对(3.2)式中的部分指数函数取长波极限从而获得方程(1.1)的半有理解. 即在(3.2)式中取$ \eta_{k}^{0}=j\pi, (1\leq k\leq 2i, 0<2i<N) $, 并令$ \mu_{j}\to0 $, 以及$ \nu_{k}=\nu_{i+k}^{*} $$ (1\leq k\leq 2i, 0<2i<N) $. 下面获得两类半有理解.

首先我们研究$ 1 $ -阶lump波解和单孤子解的混合解. 根据上面的描述, 参数的选取为$ N=3 $, $ \eta_{1}^0=\eta_{2}^0={\rm i}\pi, $并在(3.2)式中令$ \mu_{1}, \mu_{2}\to 0, $则可得

$ \begin{equation} f=(\theta_{1}\theta_{2}+A_{12})+(\theta_{1}\theta_{2}+A_{12}+A_{13}\theta_{2}+A_{23}\theta_{1}+A_{12}A_{23})e^{\eta_{3}}, \end{equation} $

其中

$ \begin{equation} A_{i3}=\frac{2\nu_{i}\nu_{3}\mu_{3}(\nu_{i}+\nu_{3})}{-\nu_{i}\mu_{3}^4+\gamma(\nu_{i}-\nu_{3})^2}, \quad i=1, 2, \end{equation} $

$ \eta_{3} $以及$ \theta_{1}, \theta_{2}, A_{12} $分别由(3.3)式, (4.5)式给出. 令

其中$ \sigma_{R}, \sigma_{I}, \nu_{3}, \mu_{3} $都是实常数. 将(5.1)式代入(3.1)式可得到其相应的半有理解.

图 4表示的是$ 1 $ -阶lump波解与单孤子解之间的混合解在适当参数下的物理学特征. 从三个不同时间的图像可知, 在某一时刻$ 1 $ -阶lump解和单孤子解会进行碰撞, 之后又各自恢复原来的振幅和形状.

图 4

图 4   $1$-阶lump解和单孤子解的混合解, 参数为:$\sigma_{R}=\sigma_{I}=1,\gamma=-\frac{1}{3},\mu_{3}=1.5,$$\nu_{3}=0.5,\eta_{3}^{0}=0$ . (a) $t=-10,$ (b) $t=0$, (c) $t=10$


接下来我们研究2-阶lump解和单孤子解的混合解. 为此, 参数的选取为$ N=5, $$ \eta_{1}^0=\eta_{2}^0=\eta_{3}^0=\eta_{4}^0={\rm i}\pi, $并在(3.2)式中令$ \mu_{i}\to 0 $$ (i=1, 2, 3, 4), $则可得

$ \begin{eqnarray} f&=&(\theta_{1}\theta_{2}\theta_{3}\theta_{4}+A_{12}\theta_{3}\theta_{4}+A_{13}\theta_{2}\theta_{4}+A_{14}\theta_{2}\theta_{3}+A_{23}\theta_{1}\theta_{4}+ A_{24}\theta_{1}\theta_{3} +A_{34}\theta_{1}\theta_{2}+A_{12}A_{34}\\ &&+A_{13}A_{24}+A_{14}A_{23})+e^{\eta_{5}}[\theta_{1}\theta_{2}\theta_{3}\theta_{4}+A_{45}\theta_{1}\theta_{2}\theta_{3}+A_{35}\theta_{1}\theta_{2}\theta_{4}+A_{25}\theta_{1}\theta_{3}\theta_{4}\\ &&+A_{15}\theta_{2}\theta_{3}\theta_{4}+(A_{35}A_{45}+A_{34})\theta_{1}\theta_{2}+(A_{25}A_{45}+A_{24})\theta_{1}\theta_{3}+(A_{25}A_{35}+A_{23})\theta_{1}\theta_{4}\\ &&+(A_{15}A_{45}+A_{14})\theta_{2}\theta_{3}+(A_{15}A_{35}+A_{13})\theta_{2}\theta_{4}+(A_{15}A_{25}+A_{12})\theta_{3}\theta_{4}+(A_{25}A_{35}A_{45}\\ &&+A_{23}A_{45}+A_{25}A_{34}+A_{24}A_{35})\theta_{1}+(A_{15}A_{35}A_{45}+A_{14}A_{35}+A_{13}A_{45}+A_{15}A_{34})\theta_{2}\\ &&+(A_{15}A_{25}A_{45}+A_{14}A_{25}+A_{15}A_{24}+A_{12}A_{45})\theta_{3}+(A_{15}A_{25}A_{35}+A_{15}A_{23}+A_{13}A_{25}\\ &&+A_{12}A_{35})\theta_{4}+A_{12}A_{34}+A_{13}A_{24}+A_{14}A_{23}+A_{12}A_{35}A_{45}+A_{13}A_{25}A_{45}\\ &&+A_{14}A_{25}A_{35}+A_{15}A_{24}A_{35}+A_{15}A_{25}A_{34}+A_{15}A_{23}A_{45}+A_{15}A_{25}A_{35}A_{45}], \end{eqnarray} $

其中

$ \begin{equation} A_{i5}=\frac{2\nu_{i}\nu_{5}(\nu_{i}+\nu_{5})}{-\nu_{i}\mu_{5}^4+\gamma(\nu_{i}-\nu_{5})^2}, \quad i=1, 2, 3, 4, \end{equation} $

其中$ \sigma_{R}, \sigma_{I}, \omega_{R}, \omega_{I} $以及$ \nu_{5}, \mu_{5} $均是任意实参数. 将(5.3)式代入(3.1)式可得到其相应的半有理解.

图 5表示的是$ 2 $ -阶lump波解与单孤子解之间的混合解在适当参数下的物理学特征. 从三个不同时间的图像可知, 在某一时刻$ 2 $ -阶lump解和单孤子解会进行碰撞, 之后又各自恢复原来的振幅和形状.

图 5

图 5   $2$ -阶lump波解和单孤子解的混合解, 参数为: $\sigma_{R}=\sigma_{I}=1, \gamma=-\frac{1}{3}, \omega_{R}=0.5, $$\omega_{I}=1, $$\mu_{5}=-1.5, \nu_{5}=0.5, \eta_{5}^{0}=0$. (a) $t=-10, $ (b) $t=0$, (c) $t=10$


6 结论

该文研究了$ (3+1) $ -维Hirota方程在维数约化$ z=x $下的精确解. 首先我们利用贝尔多项式得出了双线性形式, 然后利用Hirota直接方法得到了$ N $ -孤子解表达式, 以$ N $ -孤子解为基础得出了在$ x $方向上具有周期性, $ y $方向上局域的呼吸波解. 然后利用长波极限方法分别得出了lump波解和半有理解. 半有理解讨论了$ 1 $ -阶lump波解和$ 2 $ -阶lump波解分别和单孤子解的混合解. 对所有得到的解都用Maple软件进行了几何模拟. 希望文中所得到的结果能有助于解释物理学或工程领域的某些非线性现象. 此外, 将来可以考虑对方程(2.1)做与文中类似的变换, 比如$ u(x, y, t)=\gamma x+v(x, y, t) $, 给出新解, 另外写一篇论文.

参考文献

Hirota R . The Direct Method in Soliton Theory. Cambridge: Cambridge University Press, 2004

[本文引用: 1]

楼森岳, 唐晓艳. 非线性数学物理方法. 北京: 科学出版社, 2006

Lou S Y , Tang X Y . Nonlinear Mathematical Physics Methods. Beijing: Science Press, 2006

郝晓红, 程智龙.

一类广义浅水波KdV方程的可积性研究

数学物理学报, 2019, 39A (3): 451- 460

DOI:10.3969/j.issn.1003-3998.2019.03.005     

Hao X H , Cheng Z L .

The integrability of the KdV-shallow water wave equation

Acta Math Sci, 2019, 39A (3): 451- 460

DOI:10.3969/j.issn.1003-3998.2019.03.005     

Wazwaz A M .

Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities

Nonlinear Dyn, 2016, 83, 591- 596

DOI:10.1007/s11071-015-2349-x     

Ginzburg N S , Rozental R M , Sergeev A S , et al.

Generation of rogue waves in gyrotrons operating in the regime of developed turbulence

Phys Rev Lett, 2017, 119 (3): 034801

DOI:10.1103/PhysRevLett.119.034801     

Onorato M , Residori S , Bortolozzo U , et al.

Rogue waves and their generating mechanisms in different physical contexts

Phys Rep, 2013, 528 (2): 47- 89

DOI:10.1016/j.physrep.2013.03.001     

Rao J G , Zhang Y S , Athanassios S F , He J S .

Rogue waves of the nonlocal Davey-Stewartson I equation

Nonlinearity, 2018, 31, 4090- 4107

DOI:10.1088/1361-6544/aac761      [本文引用: 1]

Ma W X , Yong X L , X .

Soliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relations

Wave Motion, 2021, 103, 102719

DOI:10.1016/j.wavemoti.2021.102719      [本文引用: 1]

Ma W X .

N-soliton solution of a combined pKP-BKP equation

J Geom Phys, 2021, 165, 104191

DOI:10.1016/j.geomphys.2021.104191     

Ma W X .

N-soliton solutions and the Hirota conditionsin (1+1)-dimensions

Int J Nonlinear Sci Numer Simul, 2021,

Ma W X .

N-soliton solutions and the Hirota conditions in (2+1)-dimensions

Opt Quantum Electron, 2020, 52, 511

DOI:10.1007/s11082-020-02628-7     

Ma W X .

N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation

Math Comput Simulat, 2021, 190 (C): 270- 279

[本文引用: 1]

Ma W X .

Lump solutions to the Kadomtsev-Petviashvili equation

Phys Lett A, 2015, 379 (36): 1975- 1978

DOI:10.1016/j.physleta.2015.06.061      [本文引用: 1]

Ma W X , Qin Z Y , X .

Lump solutions to dimensionally reduced p-gKP and p-gBKP equations

Nonlinear Dyn, 2016, 84, 923- 931

DOI:10.1007/s11071-015-2539-6     

Tian S F .

Asymptotic behavior of a weakly dissipative modified two-component Dullin-Gottwald-Holm system

Appl Math Lett, 2018, 83, 65- 72

DOI:10.1016/j.aml.2018.03.019      [本文引用: 1]

Ablowitz M J , Satsuma J .

Solitons and rational solutions of nonlinear evolution equations

J Math Phys, 1978, 19 (10): 2180- 2186

[本文引用: 1]

Satsuma J , Ablowitz M J .

Two-dimensional lumps in nonlinear dispersive systems

J Math Phys, 1979, 20, 1496- 1503

DOI:10.1063/1.524208      [本文引用: 1]

Huang L L , Chen Y .

Lump solutions and interaction phenomenon for (2+1)-dimensional Sawada-Kotera equation

Commun Theor Phys, 2017, 67, 473- 478

DOI:10.1088/0253-6102/67/5/473      [本文引用: 1]

Tian S F , Zhang T T .

Long-time asymptotic behavior for the Gerdjikov-Ivanov type of derivative nonlinear Schrodinger equation with time-periodic boundary condition

Proc Am Math Soc, 2018, 146 (4): 1713- 1729

Qian C , Rao J G , Liu Y B , He J S .

Rogue waves in the three-dimensional Kadomtsev-Petviashvili equation

Chin Phys Lett, 2016, 33 (11): 110201

DOI:10.1088/0256-307X/33/11/110201      [本文引用: 1]

Peng W Q , Tian S F , Zhang T T .

Analysis on lump, lumpoff and rogue waves with predictability to the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation

Phys Lett A, 2018, 382, 2701- 2708

DOI:10.1016/j.physleta.2018.08.002     

Liu Y K , Li B .

Dynamics of rogue waves on multi-soliton background in the Benjamin Ono equation

Pramana, 2017, 88 (4): 57

DOI:10.1007/s12043-016-1361-0      [本文引用: 1]

Rao J G , Fokas A S , He J S .

Doubly localized two-dimensional rogue waves in the Davey-Stewartson I equation

J Nonlinear Sci, 2021, 31, 67

DOI:10.1007/s00332-021-09720-6      [本文引用: 1]

Rao J G , Chow K W , Mihalache D , He J S .

Completely resonant collision of lumps and line solitons in the Kadomtsev-Petviashvili I equation

Stud Appl Math, 2021, 147 (3): 1007- 1035

DOI:10.1111/sapm.12417     

Rao J G , He J S , Mihalache D .

Doubly localized rogue waves on a background of dark solitons for the Fokas system

Appl Math Lett, 2021, 121, 107435

DOI:10.1016/j.aml.2021.107435      [本文引用: 1]

Rao J G , Cheng Y , He J S .

Rational and semi-rational solutions of the nonlocal Davey-Stewartson equations

Stud Appl Math, 2017, 139 (4): 568- 598

DOI:10.1111/sapm.12178      [本文引用: 1]

Gao L N , Zhao X Y , Zi Y Y .

Resonant behavior of multiple wave solutions to a Hirota bilinear equation

Comput Math Appl, 2016, 72 (5): 1225- 1229

DOI:10.1016/j.camwa.2016.06.008      [本文引用: 2]

Dong M J , Tian S F , Yan X W , Zou L .

Solitary waves, homoclinic breather waves and rogue waves of the (3+1)-dimensional Hirota bilinear equation

Comput Math Appl, 2018, 75 (3): 957- 964

DOI:10.1016/j.camwa.2017.10.037      [本文引用: 2]

X , Ma W X .

Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation

Nonlinear Dyn, 2016, 85 (2): 1217- 1222

DOI:10.1007/s11071-016-2755-8      [本文引用: 1]

Wang C .

Lump solution and integrability for the associated Hirota bilinear equation

Nonlinear Dyn, 2017, 87 (4): 2635- 2642

DOI:10.1007/s11071-016-3216-0      [本文引用: 2]

/