数学物理学报 ›› 2022, Vol. 42 ›› Issue (3): 784-806.
赵才地1,*(),姜慧特1,李春秋1,TomásCaraballo2
收稿日期:
2021-04-23
出版日期:
2022-06-26
发布日期:
2022-05-09
通讯作者:
赵才地
E-mail:zhaocaidi2013@163.com
基金资助:
Caidi Zhao1,*(),Huite Jiang1,Chunqiu Li1,Caraballo Tomás2
Received:
2021-04-23
Online:
2022-06-26
Published:
2022-05-09
Contact:
Caidi Zhao
E-mail:zhaocaidi2013@163.com
Supported by:
摘要:
该文研究脉冲离散Ginzburg-Landau方程组的统计解及其极限行为.文章首先证明该脉冲离散方程组的全局适定性,接着证明由解算子生成的过程存在拉回吸引子和一族Borel不变概率测度,然后给出该脉冲离散方程组统计解的定义并证明其存在性.该文的结果揭示了脉冲系统的统计解只分段地满足Liouville型定理.最后,文章证明了脉冲离散Ginzburg-Landau方程组的统计解收敛于脉冲离散Schrödinger方程组的统计解.
中图分类号:
赵才地,姜慧特,李春秋,TomásCaraballo. 脉冲离散Ginzburg-Landau方程组的统计解及其极限行为[J]. 数学物理学报, 2022, 42(3): 784-806.
Caidi Zhao,Huite Jiang,Chunqiu Li,Caraballo Tomás. Statistical Solutions and Its Limiting Behavior for the Impulsive Discrete Ginzburg-Landau Equations[J]. Acta mathematica scientia,Series A, 2022, 42(3): 784-806.
1 |
Ahmed N U . Existence of optimal controls for a general class of impulsive systems on Banach spaces. SIAM J Control Optim, 2003, 42, 669- 685
doi: 10.1137/S0363012901391299 |
2 | Bainov D D , Simeonov P S . Impulsive Differential Equations: Periodic solutions and applications. New York: John Wiley, 1993 |
3 |
Beyn W J , Pilyugin S Yu . Attractors of reaction diffusion systems on infinite lattices. J Dyn Differential Equations, 2003, 15, 485- 515
doi: 10.1023/B:JODY.0000009745.41889.30 |
4 |
Bonotto E M , Bortolan M C , Caraballo T . Attractors for impulsive non-autonomous dynamical systems and their relations. J Differential Equations, 2017, 262, 3524- 3550
doi: 10.1016/j.jde.2016.11.036 |
5 |
Bonotto E M , Demuner D P , Jimenez M Z . Convergence for non-autonomous semidynamical systems with impulses. J Differential Equations, 2019, 266, 227- 256
doi: 10.1016/j.jde.2018.07.035 |
6 |
Bouchard B , Dang N M , Lehalle C A . Optimal control of trading algorithms: A general impulse control approach. SIAM J Financial Math, 2011, 2, 404- 438
doi: 10.1137/090777293 |
7 |
Bronzi A , Mondaini C , Rosa R . Trajectory statistical solutions for three-dimensional Navier-Stokes-like systems. SIAM J Math Anal, 2014, 46, 1893- 1921
doi: 10.1137/130931631 |
8 |
Bronzi A , Rosa R . On the convergence of statistical solutions of the 3D Navier-Stokes-$\alpha$ model as $\alpha$ vanishes. Discrete Cont Dyn Syst, 2014, 34, 19- 49
doi: 10.3934/dcds.2014.34.19 |
9 |
Bronzi A , Mondaini C , Rosa R . Abstract framework for the theory of statistical solutions. J Differential Equations, 2016, 260, 8428- 8484
doi: 10.1016/j.jde.2016.02.027 |
10 |
Caraballo T , Morillas F , Valero J . Attractors of stochastic lattice dynamical systems with a multipliative noise and non-Lipschitz nonlinearities. J Differential Equations, 2012, 253, 667- 693
doi: 10.1016/j.jde.2012.03.020 |
11 | Caraballo T , Kloeden P , Real J . Invariant measures and statistical solutions of the globally modified Navier-Stokes equations. Discrete Cont Dyn Syst-B, 2008, 10, 761- 781 |
12 |
Chekroun M , Glatt-Holtz N . Invariant measures for dissipative dynamical systems: abstract results and applications. Comm Math Phys, 2012, 316, 723- 761
doi: 10.1007/s00220-012-1515-y |
13 |
Chow S N , Paret J M . Pattern formation and spatial chaos in lattice dynamical systems. IEEE Trans Circuits Syst, 1995, 42, 752- 756
doi: 10.1109/81.473584 |
14 | Chow S N. Lattice Dynamical Systems//Macki J W, Zecca P. Dynamical Systems. Berlin: Springer-Verlag, 2003: 1-102 |
15 |
Ciesielski K . On semicontinuity in impulsive dynamical systems. Bull Pol Acad Sci Math, 2004, 52, 71- 80
doi: 10.4064/ba52-1-8 |
16 |
Ciesielski K . On stability in impulsive dynamical systems. Bull Pol Acad Sci Math, 2004, 52, 81- 91
doi: 10.4064/ba52-1-9 |
17 |
Ciesielski K . On time reparametrizations and isomorphisms of impulsive dynamical systems. Ann Polon Math, 2004, 84, 1- 25
doi: 10.4064/ap84-1-1 |
18 |
Davis M H , Guo X , Wu G . Impulse control of multidimensional jump diffusions. SIAM J Control Optim, 2010, 48, 5276- 5293
doi: 10.1137/090780419 |
19 |
Foias C , Prodi G . Sur les solutions statistiques des équations de Naiver-Stokes. Ann Mat Pura Appl, 1976, 111, 307- 330
doi: 10.1007/BF02411822 |
20 | Foias C , Manley O , Rosa R , Temam R . Navier-Stokes Equations and Turbulence. Cambridge: Cambridge University Press, 2001 |
21 |
Foias C , Rosa R , Temam R . Properties of stationary statistical solutions of the three-dimensional Navier-Stokes equations. J Dyn Differential Equations, 2019, 31, 1689- 1741
doi: 10.1007/s10884-018-9719-2 |
22 |
Han X , Kloeden P . Non-autonomous lattice systems with switching effects and delayed recovery. J Differential Equations, 2016, 261, 2986- 3009
doi: 10.1016/j.jde.2016.05.015 |
23 |
Iovane G , Kapustyan A V . Global attractor for impulsive reaction-diffusion equation. Nonlinear Oscil, 2005, 8, 318- 328
doi: 10.1007/s11072-006-0004-7 |
24 |
Iovane G , Kapustyan A V , Valero J . Asymptotic behavior of reaction-diffusion equations with non-damped impulsive effects. Nonlinear Anal, 2008, 68, 2516- 2530
doi: 10.1016/j.na.2007.02.002 |
25 | Jiang H , Zhao C . Trajectory statistical solutions and Liouville type theorem for nonlinear wave equations with polynomial growth. Adv Differential Equations, 2021, 26 (3/4): 107- 132 |
26 |
Karachalios N I , Yannacopoulos A N . gloabl existence and compact attractors for the discrete nonlinear Schrödinger equation. J Differential Equations, 2005, 217, 88- 123
doi: 10.1016/j.jde.2005.06.002 |
27 |
Keener J P . Propagation and its failure in coupled systems of discret excitable cells. SIAM J Appl Math, 1987, 47, 556- 572
doi: 10.1137/0147038 |
28 |
Kloeden P , Marín-Rubio P , Real J . Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations. Comm Pure Appl Anal, 2009, 8, 785- 802
doi: 10.3934/cpaa.2009.8.785 |
29 |
Li H , Bates P W , Lu S . Dynamics of the 3D fractional complex Ginzburg-Landau equation. J Differential Equations, 2015, 259, 5276- 5301
doi: 10.1016/j.jde.2015.06.028 |
30 |
李永军, 桑燕苗, 赵才地. 一阶格点系统的不变测度与Liouville型方程. 数学物理学报, 2020, 40A (2): 328- 339
doi: 10.3969/j.issn.1003-3998.2020.02.006 |
Li Y J , Sang Y M , Zhao C D . Invariant measures and Liouville type equation for first-order lattice system. Acta Mathematica Scientia, 2020, 40A (2): 328- 339
doi: 10.3969/j.issn.1003-3998.2020.02.006 |
|
31 |
Łukaszewicz G . Pullback attractors and statistical solutions for 2-D Navier-Stokes equations. Discrete Cont Dyn Syst-B, 2008, 9, 643- 659
doi: 10.3934/dcdsb.2008.9.643 |
32 |
Łukaszewicz G , Robinson J C . Invariant measures for non-autonomous dissipative dynamical systems. Discrete Cont Dyn Syst, 2014, 34, 4211- 4222
doi: 10.3934/dcds.2014.34.4211 |
33 | Rosa R. Theory and applications of statistical solutions of the Navier-Stokes equations//Robinson J C, Rodrigo J L. London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 2009: 228-257 |
34 |
Schmalfuss B . Attractors for non-autonomous and random dynamical systems perturbed by impulses. Discrete Cont Dyn Syst, 2003, 9, 727- 744
doi: 10.3934/dcds.2003.9.727 |
35 | Vishik M , Fursikov A . Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier-Stokes equations. Siberian Math J, 1978, 19, 710- 729 |
36 |
Wang B . Dynamics of systems on infinite lattices. J Differential Equations, 2006, 221, 224- 245
doi: 10.1016/j.jde.2005.01.003 |
37 |
Wang C , Xue G , Zhao C . Invariant Borel probability measures for discrete long-wave-short-wave resonance equations. Appl Math Comp, 2018, 339, 853- 865
doi: 10.1016/j.amc.2018.06.059 |
38 |
Wang J , Zhao C , Caraballo T . Invariant measures for the 3D globally modified Navier-Stokes equations with unbounded variable delays. Comm Nonl Sci Numer Simu, 2020, 91, 105459
doi: 10.1016/j.cnsns.2020.105459 |
39 | Xu J H , Caraballo T . Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete Cont Dyn Syst-B, 2019, 24, 2719- 2743 |
40 |
Xu J H , Zhang Z , Caraballo T . Well-posedness and dynamics of impulsive fractional stochastic evolution equations with unbounded delay. Comm Nonlin Sci Numer Simu, 2019, 75, 121- 139
doi: 10.1016/j.cnsns.2019.03.002 |
41 |
Yan X , Wu Y , Zhong C . Uniform attractors for impulsive reaction-diffusion equations. Appl Math Comp, 2010, 216, 2534- 2543
doi: 10.1016/j.amc.2010.03.095 |
42 |
Zhao C , Yang L . Pullback attractor and invariant measures for three dimensional globally modified Navier-Stokes equations. Comm Math Sci, 2017, 15, 1565- 1580
doi: 10.4310/CMS.2017.v15.n6.a4 |
43 | Zhao C , Xue G , Łukaszewicz G . Pullabck attractor and invariant measures for the discrete Klein-Gordon-Schrödinger equatios. Discrete Cont Dyn Syst-B, 2018, 23, 4021- 4044 |
44 |
Zhao C , Caraballo T . Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations. J Differential Equations, 2019, 266, 7205- 7229
doi: 10.1016/j.jde.2018.11.032 |
45 |
Zhao C , Li Y , Caraballo T . Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications. J Differential Equations, 2020, 269, 467- 494
doi: 10.1016/j.jde.2019.12.011 |
46 |
Zhao C , Li Y , Łukaszewicz G . Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids. Z Angew Math Phys, 2020, 71, 1- 24
doi: 10.1007/s00033-019-1224-x |
47 |
Zhao C , Song Z , Caraballo T . Strong trajectory statistical solutions and Liouville type equations for dissipative Euler equations. Appl Math Lett, 2020, 99, 105981
doi: 10.1016/j.aml.2019.07.012 |
48 |
Zhao C , Li Y , Song Z . Trajectory statistical solutions for the 3D Navier-Stokes equations: The trajectory attractor approach. Nonlinear Anal RWA, 2020, 53, 103077
doi: 10.1016/j.nonrwa.2019.103077 |
49 | Zhao C , Li Y , Sang Y . Using trajectory attractor to construct trajectory statistical solutions for 3D incompressible micropolar flows. Z Angew Math Mech, 2020, 100, e201800197 |
50 |
Zhao C , Caraballo T , Łukaszewicz G . Statistical solution and Liouville type theorem for the Klein-Gordon-Schrödinger equations. J Differential Equations, 2021, 281, 1- 32
doi: 10.1016/j.jde.2021.01.039 |
51 |
Zhao C , Jiang H , Caraballo T . Statistical solutions and piecewise Liouville theorem for the impulsive reaction-diffusion equations on infinite lattices. Appl Math Comp, 2021, 404, 126103
doi: 10.1016/j.amc.2021.126103 |
52 |
Zhou S . Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise. J Differential Equations, 2017, 263, 2247- 2279
doi: 10.1016/j.jde.2017.03.044 |
53 | Zhu Z , Sang Y , Zhao C . Pullback attractor and invariant measures for the discrete Zakharov equations. J Appl Anal Comp, 2019, 9, 2333- 2357 |
[1] | 李泓桥. 半空间上Hartree方程的Liouville型定理[J]. 数学物理学报, 2021, 41(2): 388-401. |
[2] | 徐明月,赵才地,TomásCaraballo. 三维不可压Navier-Stokes方程组轨道统计解的退化正则性[J]. 数学物理学报, 2021, 41(2): 336-344. |
[3] | 闫朝琳,高建芳. 混合型脉冲微分方程的数值振动性分析[J]. 数学物理学报, 2020, 40(4): 993-1006. |
[4] | 唐素芳. 上半空间积分方程组的Liouville型定理[J]. 数学物理学报, 2017, 37(4): 647-662. |
[5] | 张书陶, 韩亚洲. Heisenberg群上移动球面法的应用——一类半线性方程的Liouville型定理[J]. 数学物理学报, 2017, 37(2): 278-286. |
[6] | 陈会文, 李建利, 申建华. 脉冲Neumann边值问题的新结果[J]. 数学物理学报, 2017, 37(1): 54-61. |
[7] | 肖迎迎, 郑雄军. Morse指数与带权的椭圆方程的Liouville型定理[J]. 数学物理学报, 2016, 36(3): 493-499. |
[8] | 周振荣. F -稳态映射的Liouville型定理[J]. 数学物理学报, 2010, 30(6): 1677-1685. |
[9] | 盖永杰, 蒋达清, 祖力, 翁世有, 魏君. 奇异半正二阶脉冲Dirichlet边值问题的正解[J]. 数学物理学报, 2009, 29(5): 1415-1425. |
[10] | 张瑜, 王春燕, 孙继涛. 具有可变脉冲点的脉冲微分方程的稳定性[J]. 数学物理学报, 2005, 25(6): 777-783. |
[11] | 綦建刚, 吕永敬, 靳明忠. 脉冲微分方程的脉冲聚点存在的一般性条件[J]. 数学物理学报, 2001, 21(3): 342-348. |
[12] | 张祥, 叶勤. 脉冲微分方程非线性边值问题的奇摄动[J]. 数学物理学报, 1994, 14(4): 419-423. |
|