数学物理学报 ›› 2022, Vol. 42 ›› Issue (3): 716-729.

• 论文 • 上一篇    下一篇

Chern-Simons-Schrödinger方程能量泛函的L2约束极小化问题

杨迎(),沈烈军*()   

  1. 武汉理工大学数学科学研究中心 武汉 430070
  • 收稿日期:2021-06-03 出版日期:2022-06-26 发布日期:2022-05-09
  • 通讯作者: 沈烈军 E-mail:yingyang_2019@sina.com;liejunshen@163.com
  • 作者简介:杨迎,E-mail:yingyang_2019@sina.com
  • 基金资助:
    国家自然科学基金(11931012);国家自然科学基金(11871387)

Research on the Lowest Energy Solution ofChern-Simons-Schrödinger Equation with Trapping Potential

Ying Yang(),Liejun Shen*()   

  1. Center of Mathematics, Wuhan University of Technology, Wuhan 430070
  • Received:2021-06-03 Online:2022-06-26 Published:2022-05-09
  • Contact: Liejun Shen E-mail:yingyang_2019@sina.com;liejunshen@163.com
  • Supported by:
    the NSFC(11931012);the NSFC(11871387)

摘要:

该文主要研究$\mathbb{R}^2$上一类Chern-Simons-Schrödinger (CSS)方程在给定$L^{2}$范数下解的存在性.这类问题可转化为该方程对应能量泛函$E^\beta_{p}(u)$在约束条件$\|u\|_{L^{2}(\mathbb{R}^2)}=1$下的变分求极小问题.对于质量次临界的情形,即$p\in (0,2)$,该文应用简洁的方法证明了无论位势函数$V (x)$是否为$0$,这类约束变分极小化问题都是可达的;对于质量临界的情形,即$p=2$,该文找到了两个可显式给出的正常数$\beta^{*}>\beta_{*}$,使得$V (x)\equiv0$时的约束变分极小化问题对于$\beta>\beta^{*}$$\beta\in (0,\beta_{*}]$均不可达,而对于$V (x)\not\equiv 0$时的约束变分极小化问题则在$\beta\in (0,\beta_{*}]$可达,$\beta>\beta^{*}$不可达.此外,该文还讨论了质量次临界的约束极小能量在$p\rightarrow2$时的极限行为.

关键词: Chern-Simons-Schrödinger方程, 能量估计, 约束变分, 极限行为

Abstract:

In this paper, we mainly study the existence of solutions with prescribed $L^{2}$-norm to the Chern-Simons-Schrödinger (CSS) equation. This type problem can be transformed into look for the minimizer of the corresponding energy functional $E^\beta_{p} (u)$ under the constraint $\|u\|_{L^{ 2}(\mathbb{R}^2)}=1$. Concerning the subcritical mass case, that is, $p\in(0,2)$, no matter whether the potential function $V(x)$ equals to $0$, we prove that the constraint minimization can be achieved by some simple methods. We are also concerned with the critical mass case of $p=2$:if $V(x)\equiv0$, there exist two constants $\beta^*>\beta_*>0$ which can be explicitly determined such that the constraint minimization cannot achieved for any $\beta\in(0,\beta_{*}]\cup(\beta^{*},+\infty)$; if $V(x)\not\equiv0$, the constraint minimization cannot be achieved for $\beta>\beta^{*}$, but can be achieved for $\beta\in(0,\beta_{*}]$. In addition, we discuss the limit behavior of the mass subcritical constrained minimum energy when $p\nearrow2$.

Key words: Chern-Simons-Schrödinger equation, Energy estimate, Constrained minimization, Limit behavior

中图分类号: 

  • O175.2