数学物理学报 ›› 2022, Vol. 42 ›› Issue (3): 904-919.
收稿日期:
2021-08-12
出版日期:
2022-06-26
发布日期:
2022-05-09
通讯作者:
龙宪军
E-mail:jyang1230@163.com;xianjunlong@ctbu.edu.cn
作者简介:
杨静, E-mail: 基金资助:
Received:
2021-08-12
Online:
2022-06-26
Published:
2022-05-09
Contact:
Xianjun Long
E-mail:jyang1230@163.com;xianjunlong@ctbu.edu.cn
Supported by:
摘要:
该文在Hilbert空间中给出了一个新投影算法,找到了伪单调变分不等式问题的解集与半压缩映射的不动点集的公共元.在映射是伪单调和一致连续的条件下,证明了强收敛定理.数值实验结果表明了新算法的有效性和优越性.
中图分类号:
杨静,龙宪军. 关于伪单调变分不等式与不动点问题的新投影算法[J]. 数学物理学报, 2022, 42(3): 904-919.
Jing Yang,Xianjun Long. A New Projection Algorithm for Solving Pseudo-Monotone Variational Inequality and Fixed Point Problems[J]. Acta mathematica scientia,Series A, 2022, 42(3): 904-919.
1 | Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems. New York: Springer, 2003 |
2 | Kinderlehrer D, Stampacchia G. An Introduction to Variational Inequalities and Their Applications. New York: Academic Press, 1980 |
3 |
Goldstein A A . Convex programming in Hilbert space. Bull Amer Math Soc, 1964, 70, 709- 710
doi: 10.1090/S0002-9904-1964-11178-2 |
4 |
Tseng P . A modified forward-backward splitting method for maximal monotone mappings. SIAM J Control Optim, 2000, 38, 431- 446
doi: 10.1137/S0363012998338806 |
5 | 贺月红, 龙宪军. 求解伪单调变分不等式问题的惯性收缩投影算法. 数学物理学报, 2021, 41A(6): 1897-1911 |
He Y H, Long X J. A inertial contraction and projection algorithm for pseudomonotone variational inequality problems. 2021, 41A(6): 1897-1911 | |
6 | 万升联. 解变分不等式的一种二次投影算法. 数学物理学报, 2021, 41A(1): 237-244 |
Wan S L. A double projection algorithm for solving variational inequalities. 2021, 41A(1): 237-244 | |
7 |
Fan J J , Qin X L . Weak and strong convergence of inertial Tseng's extragradient algorithms for solving variational inequality problems. Optimization, 2021, 70, 1195- 1216
doi: 10.1080/02331934.2020.1789129 |
8 |
Thong D V , Voung P T . Modified Tseng's extragradient methods for solving pseudo-monotone variational inequalities. Optimization, 2019, 68, 2207- 2226
doi: 10.1080/02331934.2019.1616191 |
9 |
Yang J , Liu H W . Strong convergence result for solving monotone variational inequalities in Hilbert space. Numer Algor, 2019, 80, 741- 752
doi: 10.1007/s11075-018-0504-4 |
10 |
Lei M , He Y R . An extragradient method for solving variational inequalities without monotonocity. J Optim Theory Appl, 2021, 188, 432- 446
doi: 10.1007/s10957-020-01791-x |
11 |
Thong D V , Hieu D V . Mann-type algorithms for variational inequality problems and fixed point problems. Optimization, 2020, 69, 2305- 2326
doi: 10.1080/02331934.2019.1692207 |
12 |
Thong D V , Hieu D V . Some extragradient-viscosity algorithms for solving variational inequality problems and fixed point problems. Numer Algor, 2019, 82, 761- 789
doi: 10.1007/s11075-018-0626-8 |
13 | 郭丹妮, 蔡钢. 关于变分不等式和不动点问题的新迭代算法[OL]. 数学学报(中文版), [2021-01-15]. http://kns.cnki.net/kcms/detail/11.2038.O1.20210114.1040.010.html |
Guo D N, Cai G. A new iterative method for solving variational inequality and fixed point problems[OL]. Acta Mathematica Sinica(Chinese Series), [2021-01-15]. http://kns.cnki.net/kcms/detail/11.2038.O1.20210114.1040.010.html | |
14 |
Ceng L C , Shang M J . Hybrid inertial subgradient extragradient methods for variational inequalities and fixed point problems involving asymptotically nonexpansive mappings. Optimization, 2021, 70, 715- 740
doi: 10.1080/02331934.2019.1647203 |
15 |
Karamardian S . Complementarity problems over cones with monotone and pseudomonotone maps. J Optim Theory Appl, 1976, 18, 445- 454
doi: 10.1007/BF00932654 |
16 |
Chidume C E , Maruster S . Iterative methods for the computation of fixed points of demicontractive mappings. J Comput Appl Math, 2010, 234, 861- 882
doi: 10.1016/j.cam.2010.01.050 |
17 | Goebel K, Reich S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. New York: Marcel Dekker, 1984 |
18 |
Denisov S V , Semenov V V , Chabak L M . Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern Syst Anal, 2015, 51, 757- 765
doi: 10.1007/s10559-015-9768-z |
19 |
Maingé P E . A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J Control Optim, 2008, 47, 1499- 1515
doi: 10.1137/060675319 |
20 |
Xu H K . Iterative algorithms for nonlinear operators. J Lond Math Soc, 2002, 66, 240- 256
doi: 10.1112/S0024610702003332 |
21 |
Cottle R W , Yao J C . Pseudo-monotone complementarity problems in Hilbert space. J Optim Theo Appl, 1992, 75, 281- 295
doi: 10.1007/BF00941468 |
[1] | 杨蓝翔,陈艺,叶明露. 一类拟单调变分不等式的惯性投影算法[J]. 数学物理学报, 2023, 43(2): 593-603. |
[2] | 夏平静,蔡钢. Hilbert 空间中变分不等式问题的自适应粘性算法[J]. 数学物理学报, 2023, 43(2): 581-592. |
[3] | 徐家发, 杨志春. 高阶Riemann-Liouville型分数阶脉冲微分方程积分边值问题的正解[J]. 数学物理学报, 2023, 43(1): 53-68. |
[4] | 宋玉莹, 范虹霞. 一类中立型随机发展方程解的存在性与正则性[J]. 数学物理学报, 2023, 43(1): 238-248. |
[5] | 段洁, 夏福全. 求解变分不等式与不动点问题公共解的新Tseng型外梯度算法[J]. 数学物理学报, 2023, 43(1): 274-290. |
[6] | 施翠云,宾茂君. Banach空间中微分变分不等式系统的Bang-Bang准则[J]. 数学物理学报, 2022, 42(6): 1653-1670. |
[7] | 刘文杰,谢胜利. 脉冲无穷时滞中立型测度微分方程mild解的存在性[J]. 数学物理学报, 2022, 42(6): 1671-1681. |
[8] | 刘丽平,彭建文. 求解变分不等式和不动点问题的公共元的修正次梯度外梯度算法[J]. 数学物理学报, 2022, 42(5): 1517-1536. |
[9] | 段磊,陈天兰. 带平均曲率算子的离散混合边值问题凸解的存在性[J]. 数学物理学报, 2022, 42(2): 379-386. |
[10] | 赵童,袁海龙,郭改慧. 一类具有修正的Leslie-Gower项的捕食-食饵模型的正解[J]. 数学物理学报, 2022, 42(1): 176-186. |
[11] | 韩晓玲,蔡蕙泽,杨虎军. 星图上非线性分数阶微分方程边值问题解的存在唯一性[J]. 数学物理学报, 2022, 42(1): 139-156. |
[12] | 贺月红,龙宪军. 求解伪单调变分不等式问题的惯性收缩投影算法[J]. 数学物理学报, 2021, 41(6): 1897-1911. |
[13] | 张纪凤,张伟,倪晋波,任丹丹. 带p(t)-Laplacian算子的分数阶Langevin方程反周期边值问题解的存在性[J]. 数学物理学报, 2021, 41(4): 1024-1032. |
[14] | 徐家发,罗洪林,刘立山. 一类具有p-Laplacian算子的分数阶差分方程边值问题的正解[J]. 数学物理学报, 2021, 41(2): 402-414. |
[15] | 梁载涛,单雪梦. |
|