1 |
Saint-Venant De . Théorie du mouvement non-permanent des eaux avec application aux crues des rivires et à lintroduction des marées dans leur lit. Comptes Rendus Hebdomadaires Des Séances De Lacadémie Des Sciences, 1871, 73 (99): 148- 154
|
2 |
Nessyahu H , Tadmor E . Non-oscillatory central differencing for hyperbolic conservation laws. J Comput Phys, 1990, 87 (2): 408- 463
doi: 10.1016/0021-9991(90)90260-8
|
3 |
Touma R . Central unstaggered finite volume schemes for hyperbolic systems: applications to unsteady shallow water equations. Appl Math Comput, 2009, 213 (1): 47- 59
|
4 |
Touma R . Well-balanced central schemes for systems of shallow water equations with wet and dry states. Appl Math Model, 2016, 40 (4): 2929- 2945
doi: 10.1016/j.apm.2015.09.073
|
5 |
Dong J , Li D F . An effect non-staggered central scheme based on new hydrostatic reconstruction. Appl Math Comput, 2019, 372
doi: 10.1016/j.amc.2019.124992
|
6 |
Cheng Y Z , Kurganov A . Moving-water equilibria preserving central-upwind schemes for the shallow water equations. Commun Math Sci, 2016, 14 (6): 1643- 1663
doi: 10.4310/CMS.2016.v14.n6.a9
|
7 |
Cheng Y Z , Chertock A , Herty M , et al. A new approach for designing moving-water equilibria preserving schemes for the shallow water equations. J Sci Comput, 2019, 80 (1): 538- 554
doi: 10.1007/s10915-019-00947-w
|
8 |
Liu X , Chen X , Jin S , et al. Moving-water equilibria preserving partial relaxation scheme for the Saint-Venant system. SIAM J Sci Comput, 2020, 42 (4): A2206- A2229
doi: 10.1137/19M1258098
|
9 |
Noelle S , Xing Y L , Shu C W . High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J Comput Phys, 2007, 226 (1): 29- 58
doi: 10.1016/j.jcp.2007.03.031
|
10 |
Xing Y L , Shu C W , Noelle S . On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations. J Sci Comput, 2011, 48 (1): 339- 349
|
11 |
Xing Y L . Exactly well-balanced discontinuous Galerkin methods for the shallow water equations with moving water equilibrium. J Comput Phys, 2014, 257, 536- 553
doi: 10.1016/j.jcp.2013.10.010
|
12 |
Kurganov A , Petrova G . A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun Math Sci, 2007, 5 (1): 133- 160
doi: 10.4310/CMS.2007.v5.n1.a6
|
13 |
Chen G X , Noelle S . A new hydrostatic reconstruction scheme based on subcell reconstructions. SIAM J Numer Anal, 2017, 55 (2): 758- 784
doi: 10.1137/15M1053074
|
14 |
Jiang G S , Levy D , Lin C T , et al. High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws. SIAM J Numer Anal, 1998, 35 (6): 2147- 2168
doi: 10.1137/S0036142997317560
|
15 |
Touma R . Unstaggered central schemes with constrained transport treatment for ideal and shallow water magnetohydrodynamics. Appl Numer Math, 2010, 60 (7): 752- 766
doi: 10.1016/j.apnum.2010.02.006
|
16 |
Touma R , Khankan S . Well-balanced unstaggered central schemes for one and two-dimensional shallow water equation systems. Appl Math Comput, 2012, 218 (10): 5948- 5960
|
17 |
Bollermann A , Chen G X , Kurganov A , et al. A well-balanced reconstruction for wet/dry fronts for the shallow water equations. J Sci Comput, 2013, 56 (2): 267- 290
doi: 10.1007/s10915-012-9677-5
|