数学物理学报 ›› 2022, Vol. 42 ›› Issue (3): 716-729.

• 论文 • 上一篇    下一篇

Chern-Simons-Schrödinger方程能量泛函的L2约束极小化问题

杨迎(),沈烈军*()   

  1. 武汉理工大学数学科学研究中心 武汉 430070
  • 收稿日期:2021-06-03 出版日期:2022-06-26 发布日期:2022-05-09
  • 通讯作者: 沈烈军 E-mail:yingyang_2019@sina.com;liejunshen@163.com
  • 作者简介:杨迎,E-mail:yingyang_2019@sina.com
  • 基金资助:
    国家自然科学基金(11931012);国家自然科学基金(11871387)

Research on the Lowest Energy Solution ofChern-Simons-Schrödinger Equation with Trapping Potential

Ying Yang(),Liejun Shen*()   

  1. Center of Mathematics, Wuhan University of Technology, Wuhan 430070
  • Received:2021-06-03 Online:2022-06-26 Published:2022-05-09
  • Contact: Liejun Shen E-mail:yingyang_2019@sina.com;liejunshen@163.com
  • Supported by:
    the NSFC(11931012);the NSFC(11871387)

摘要:

该文主要研究R2上一类Chern-Simons-Schrödinger (CSS)方程在给定L2范数下解的存在性.这类问题可转化为该方程对应能量泛函Eβpu在约束条件uL2R2=1下的变分求极小问题.对于质量次临界的情形,即p02,该文应用简洁的方法证明了无论位势函数Vx是否为0,这类约束变分极小化问题都是可达的;对于质量临界的情形,即p=2,该文找到了两个可显式给出的正常数β>β,使得Vx0时的约束变分极小化问题对于β>ββ0β]均不可达,而对于Vx0时的约束变分极小化问题则在β0β]可达,β>β不可达.此外,该文还讨论了质量次临界的约束极小能量在p2时的极限行为.

关键词: Chern-Simons-Schrödinger方程, 能量估计, 约束变分, 极限行为

Abstract:

In this paper, we mainly study the existence of solutions with prescribed L2-norm to the Chern-Simons-Schrödinger (CSS) equation. This type problem can be transformed into look for the minimizer of the corresponding energy functional Eβp(u) under the constraint uL2(R2)=1. Concerning the subcritical mass case, that is, p(0,2), no matter whether the potential function V(x) equals to 0, we prove that the constraint minimization can be achieved by some simple methods. We are also concerned with the critical mass case of p=2:if V(x)0, there exist two constants β>β>0 which can be explicitly determined such that the constraint minimization cannot achieved for any β(0,β](β,+); if V(x)0, the constraint minimization cannot be achieved for β>β, but can be achieved for β(0,β]. In addition, we discuss the limit behavior of the mass subcritical constrained minimum energy when p2.

Key words: Chern-Simons-Schrödinger equation, Energy estimate, Constrained minimization, Limit behavior

中图分类号: 

  • O175.2