1 |
Cooke K L , Wiener J . Retarded differential equations with piecewise constant delays. J Math Anal Appl, 1984, 99, 265- 297
doi: 10.1016/0022-247X(84)90248-8
|
2 |
Song M H , Liu M Z . Numerical stability and oscillation of the Runge-Kutta methods for equation $x'(t)=ax(t)+a_{0}x(M[\frac{t+N}{M}])$. Adv Difference Equa, 2012, 146, 1- 13
|
3 |
Chen F . Oscillatory and asymptotic behaviour of odd order delay differential equations with impluses. J Math Sci, 2013, 15, 258- 273
|
4 |
Habibi S . Estimates on the dimension of an exponential attractor for a delay differential equation. Math Slovaca, 2014, 64, 1237- 1248
doi: 10.2478/s12175-014-0272-0
|
5 |
Á Garab , Pituk M , Stavroulakis I P . A sharp oscillation criterion for a linear delay differential equation. Appl Math Lett, 2019, 93, 58- 65
doi: 10.1016/j.aml.2019.01.042
|
6 |
Durina J , Jadlovská I . A sharp oscillation result for second-order half-linear noncanonical delay differential equations. Electron J Qual Theory Differ Equa, 2020, 2020 (46): 1- 14
|
7 |
Sethi A K , Tripathy A K . On oscillatory second order differential equations with variable delays. Palestine J Math, 2021, 3 (1): 11- 24
|
8 |
Pullan M C . Linear optimal control problems with piecewisw analytic solutions. J Math Anal Appl, 1996, 197, 207- 226
doi: 10.1006/jmaa.1996.0016
|
9 |
Shah S M , Wiener J . Advanced differential equations with piecewise constant argument deviations. Int J Math Sci, 1983, 6, 671- 703
doi: 10.1155/S0161171283000599
|
10 |
Song M H , Yang Z W , Liu M Z . Stability of $\theta$-methods for advanced differential equations with piecewise continuous arguments. Comput Math Appl, 2005, 49, 1295- 1301
doi: 10.1016/j.camwa.2005.02.002
|
11 |
Akhmet M U . On the reduction principle for differential equations with piecewise constant argument of generalized type. J Math Anal Appl, 2007, 336, 646- 663
doi: 10.1016/j.jmaa.2007.03.010
|
12 |
Ozturk I , Bozkurt F . Stability analysis of a population model with piecewisw constant arguments. Nonlinear Anal Real World Appl, 2011, 12, 1532- 1545
doi: 10.1016/j.nonrwa.2010.10.011
|
13 |
Gao J F . Numerical oscillation and non-oscillation for differential equation with piecewise continuous arguments of mixed type. Appl Math Comput, 2017, 299, 16- 27
|
14 |
Wiener J , Cooke K L . Oscillations in systems of differential equations with piecewise constant argument. J Math Anal Appl, 1989, 137, 221- 239
doi: 10.1016/0022-247X(89)90286-2
|
15 |
Luo Z G , Shen J H . New results on oscillation for delay differential equations with piecewise constant argument. Comput Math Appl, 2003, 45, 1841- 1848
doi: 10.1016/S0898-1221(03)90005-8
|
16 |
Wang Q , Zhu Q Y , Liu M Z . Stability and oscillations of numerical solutions for differential equations with piecewise continuous arguments of alternately advanced and retarded type. J Comput Appl Math, 2011, 235, 1542- 1552
doi: 10.1016/j.cam.2010.08.041
|
17 |
Zhang C , Li T , Saker S H . Oscillation of fourth order delay differential equations. J Math Sci, 2014, 201, 322- 335
|
18 |
Džurina J , Jadlovská I . A note on oscillation of second-order delay differential equations. Appl Math Lett, 2017, 69, 126- 132
doi: 10.1016/j.aml.2017.02.003
|
19 |
Grace S R , Jadlovská I , Zafer A . Oscillation criteria for odd-order nonlinear delay differential equations with a middle term. Math Methods Appl Sci, 2017, 40, 5147- 5160
doi: 10.1002/mma.4377
|
20 |
Moaaz O , Mahmoud E E , Alharbi W R . Third-order neutral delay differential equations: New iterative criteria for oscillation. J Funct Spaces, 2020, 2020 (1): 1- 8
|
21 |
Liu M Z , Gao J F , Yang Z W . Oscillation analysis of numerical solution in the $\theta$-methods for equation $x'(t)+ax(t)+a_1x([t-1])=0$. Appl Math Comput, 2007, 186, 566- 578
|
22 |
Liu M Z , Gao J F , Yang Z W . Preservation of oscillation of the Runge-Kutta method for equation $x'(t)+ax(t)+a_1x([t-1])=0$. Comput Math Appl, 2009, 58, 1113- 1125
doi: 10.1016/j.camwa.2009.07.030
|
23 |
Gao J F , Liu S M . Oscillation analysis of numerical solutions in the $\theta$-methods for differential equation of advanced type. Math Methods Appl Sci, 2015, 38, 5271- 5278
doi: 10.1002/mma.3458
|
24 |
Gao J F , Shi T T , Song F Y . Preservation of oscillation in the Runge-Kutta method for a type of advanced differential equation. Numer Funct Anal Optim, 2015, 36, 1420- 1430
doi: 10.1080/01630563.2015.1070863
|
25 |
Györi I , Ladas G . Oscillation Theory of Delay Equations with Applications. Oxford: Clarendon Press, 1991: 32- 197
|
26 |
Song M H , Yang Z W , Liu M Z . Stability of $\theta$-methods for advanced differential equations with piecewise continuous arguments. Comput Math Appl, 2005, 49, 1295- 1301
doi: 10.1016/j.camwa.2005.02.002
|