数学物理学报, 2022, 42(3): 671-693 doi:

论文

边界条件含有特征参数的四阶微分算子的自伴性和特征值的依赖性

闫文文, 许美珍,

内蒙古工业大学理学院 呼和浩特 010051

The Self-Adjointness and Dependence of Eigenvalues of Fourth-Order Differential Operator with Eigenparameters in the Boundary Conditions

Yan Wenwen, Xu Meizhen,

College of Sciences, Inner Mongolia University of Technology, Hohhot 010051

通讯作者: 许美珍, E-mail: xumeizhen1969@163.com

收稿日期: 2021-08-12  

基金资助: 国家自然科学基金.  11561051
内蒙古自然科学基金.  2021MS01020

Received: 2021-08-12  

Fund supported: the NSFC.  11561051
the NSF of Inner Mongolia.  2021MS01020

Abstract

In this paper we consider the self-adjointness and the dependence of eigenvalues of a class of discontinuous fourth-order differential operator with eigenparameters in the boundary conditions of one endpoint. By constructing a linear operator T associated with problem in a suitable Hilbert space, the study of the above problem is transformed into the research of the operator in this space, and the self-adjointness of this operator T is proved. In addition, on the basis of the self-adjointness of the operator T, we show that the eigenvalues are not only continuously but also smoothly dependent on the parameters of the problem, and give the corresponding differential expressions. In particular, giving the Fréchet derivative of the eigenvalue with respect to the eigenparameter-dependent boundary condition coefficient matrix, and the first-order derivatives of the eigenvalue with respect to the left and right sides of the inner discontinuity point c.

Keywords: Fourth-order differential operator ; Transmission condition ; Self-adjointness ; Dependence of eigenvalue ; Fréchet derivative

PDF (450KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

闫文文, 许美珍. 边界条件含有特征参数的四阶微分算子的自伴性和特征值的依赖性. 数学物理学报[J], 2022, 42(3): 671-693 doi:

Yan Wenwen, Xu Meizhen. The Self-Adjointness and Dependence of Eigenvalues of Fourth-Order Differential Operator with Eigenparameters in the Boundary Conditions. Acta Mathematica Scientia[J], 2022, 42(3): 671-693 doi:

1 引言

近年来, 国内外许多学者关于微分算子和微分方程边值问题特征值的依赖性问题进行了大量研究, 并且取得了一系列研究成果. 对于二阶微分算子, 1987年, P$ \rm{\ddot{o}} $eschel和Trubowitz在文献[1] 中证明了Dirichlet边界条件下第$ n $个特征值关于势函数$ q(x) $是可微的. 1993年, Dauge和Helffer在文献[2, 3] 中讨论了Neumann边界条件下的特征值是关于区间端点的可微函数. 1996年, Kong和Zettl在更弱的条件下进行了研究, 得到了类似的结论, 并且考虑了特征值关于区间端点、边界条件、方程系数和权函数的可微性, 以及当区间长度趋于零时, Dirichlet特征值和Neumann特征值的性质[4, 5]. 后来, 学者们将这些成果推广到了四阶及更高阶情形, 并得到类似的结果[6-10]. 随着具有转移条件Sturm-Liouville边值问题在自伴性、特征函数的完备性、Green函数等方面研究工作的进展[11-13], 学者们进一步研究了具有转移条件的二阶Sturm-Liouville问题[14]及四阶和高阶Sturm-Liouville微分算子特征值的依赖性[15-18], 证明了特征值和特征函数不仅连续依赖于问题(即问题的有关参数), 而且给出特征值关于问题中参数可微依赖的微分表达式. 此外, 还有奇数阶, 左定, 奇异等其它情形的一些推广工作可以参考文献[19-22].

在以上研究成果中, 特征参数都只出现在微分算式或微分方程中, 其实还可以出现在边界条件中[12, 13, 22-25]. 许多力学及工程技术领域中的一些问题, 如滑竿上的弦振动问题, 再如热传导方程或波动方程以及一些偏微分方程经过分离变量法之后可以得到边界条件中含有特征参数的微分算子问题[26]. 这类微分方程及边界条件中都带有特征参数的微分算子问题是算子谱理论中的重要研究内容之一, 也是近年来数学物理及科技工作者们研究的热点, 并从不同角度对此问题进行了大量研究[23, 24, 27-30]. 但是, 关于这类问题的特征值依赖性的研究成果目前甚少, 然而, 2020年, Zhang和Li考虑了边界条件一端点含有特征参数的二阶正则Sturm-Liouville算子特征值的依赖性[31].

另外, 具有转移条件(即内部具有不连续性)的Sturm-Liouville问题有着重要的应用前景, 例如热传导和质量转移问题, 衍射问题, 中间有结点的弦振动问题等, 都可以转化为内部具有不连续性的微分算子问题. 其中有许多实际问题往往需要转化为具有转移条件的高阶微分算子问题, 而四阶微分算子又是偶数阶高阶微分算子的一个典型形式, 因此, 我们对一类边界条件一端带有谱参数且具有转移条件的四阶微分算子的自伴性及特征值的依赖性研究也是很有必要的.

本文虽然是将文献[31]的结论推广到了四阶情形, 但是, 因为我们考虑的微分算式更具有一般性且带有特征参数的边界条件与前人工作中带谱参数的边界条件不同, 所以首先要在适当的Hilbert空间中证明问题的自共轭性并给出其特征值存在的条件, 进一步考虑问题特征值的依赖性. 本文不仅给出了特征值关于方程系数函数, 权函数, 转移条件相关矩阵和边界点的微分表达式, 而且也给出了特征值关于特征参数依赖的边界条件系数矩阵的Fr$ \acute{\rm{e}} $chet导数及不连续点左右两侧的一阶导数表达式.

本文安排如下: 第1节为引言; 第2节给出了本文要研究的基本问题; 第3节证明算子$ T $是自共轭的; 第4节给出了特征值和特征函数的连续性定理; 第5节得出了特征值关于问题相关参数的微分表达式.

2 预备知识

考虑一般形式的四阶微分方程

$ \begin{equation} l(y): = (p_{2}(x)y'')''-(p_{1}(x)y')'+q(x)y = \lambda w(x)y, x\in J' = (a', c)\cup(c, b'). \end{equation} $

一端具有特征参数的分离型边界条件

$ \begin{eqnarray} & &l_{1}y: = (\alpha_{1}\lambda+\beta_{1})y(a)-(\alpha_{2}\lambda+\beta_{2})((p_{2}y'')'-p_{1}y')(a) = 0, \end{eqnarray} $

$ \begin{eqnarray} & &l_{2}y: = (\alpha_{3}\lambda+\beta_{3})y'(a)-(\alpha_{4}\lambda+\beta_{4})(p_{2}y'')(a) = 0, \end{eqnarray} $

$ \begin{eqnarray} &&l_{3}y: = \cos\gamma y(b)-\sin\gamma ((p_{2}y'')'-p_{1}y')(b) = 0, \end{eqnarray} $

$ \begin{eqnarray} &&l_{4}y: = \cos\gamma y'(b)-\sin\gamma (p_{2}y'')(b) = 0 \end{eqnarray} $

及转移条件

$ \begin{equation} CY(c-)+DY(c+) = 0, \end{equation} $

其中$ -\infty<a'<a<c<b<b'<+\infty $, 且令$ J = [a, c)\cup(c, b], \lambda\in{\mathbb C} $是特征参数,

$ \begin{equation} p_{2}, p_{1}, q, w: J'\rightarrow {\mathbb R}, \frac{1}{p_{2}}, p_{1}, q, w\, \in L^{1}_{loc}(J'), w>0{\quad} a.e. {\quad} J', Y = \left(\begin{array}{c}y\\y'\\p_{2}y''\\(p_{2}y'')'-p_{1}y'\end{array}\right), \end{equation} $

$ \begin{equation} \alpha_{i}, \beta_{i}\in {\mathbb R}, i = 1, 2, 3, 4. \theta_{1} = \alpha_{1}\beta_{2}-\beta_{1}\alpha_{2}>0, \theta_{2} = \alpha_{4}\beta_{3}-\beta_{4}\alpha_{3}>0, \gamma\in (0, \pi]. \end{equation} $

$ Y(c\pm) = \lim\limits_{x\rightarrow c\pm}Y(x). C = (c_{ij}), D = (d_{ij}) $$ 4\times 4 $实矩阵, det$ C = \eta^{2}, $ det$ D = \xi^{2}, $$ \eta>0, \xi>0 $, 且满足

$ \begin{eqnarray} \xi CJ_{0}C^{T} = \eta DJ_{0}D^{T}, \, J_{0} = \left(\begin{array}{cccc}0&\ 0\ &0&\ 1\\0&0&-1&\ 0\\ 0&1&0&\ 0\\-1&0&0&\ 0\end{array}\right), \end{eqnarray} $

$ C^{T} $表示矩阵$ C $的转置, $ J_{0}^{T} = J_{0}^{-1} = -J_{0}, J_{0}\cdot J_{0} = -E $, 其中$ E $为四阶单位矩阵.

定义2.1   令微分算式$ l(y): = (p_{2}(x)y'')''-(p_{1}(x)y')'+q(x)y, $由微分算式$ l(y) $生成的最大算子$ T_{M} $的定义为

其中$ D_{M} $称为算式$ l(y) $的最大算子域.

引理2.1[32]   (Naimark Patching Lemma) 对任意的复数组$ \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4} $$ \zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4} $, 存在$ y\in D_{M} $, 满足

定义2.2   若微分方程(2.1) 在端点$ a $是正则的, 函数$ u\in D_{M}, $$ u, u', p_{2}u'', (p_{2}u'')'-p_{1}u' $$ a $点是连续的, 即

存在且有限, 类似可以定义$ b $点是正则的.

$ L^{2}_{w}(J) $表示区间$ J $上权函数为$ w $平方可积的复值可微函数全体组成的空间. 在此空间中定义如下内积

易知$ H_{1} = (L^{2}_{w}(J), \langle\cdot, \cdot\rangle_{1}) $是Hilbert空间. 在直和空间$ H = H_{1}\oplus{\mathbb C}\oplus{\mathbb C} $中定义内积, 令$ \rho_{1} = \frac{1}{\theta_{1}}, \rho_{2} = \frac{1}{\theta_{2}}, $

在Hilbert空间$ H $中定义算子$ T $如下

其中

由定义2.2可知, 对于任意的$ (f(x), h_{1}, h_{2})^{T}\in D(T), $函数$ f(x), f'(x), p_{2}f''(x), $$ ((p_{2}f'')'-p_{1}f')(x) $$ [a, c] $$ [c, b] $上是连续的.

为了简便, 令

$ \begin{eqnarray} M(f) = \beta_{1}f(a)-\beta_{2}((p_{2}f'')'-p_{1}f')(a), M'(f) = \alpha_{1}f(a)-\alpha_{2}((p_{2}f'')'-p_{1}f')(a), \end{eqnarray} $

$ \begin{eqnarray} N(f) = \beta_{3}f'(a)-\beta_{4}(p_{2}f'')(a), N'(f) = \alpha_{3}f'(a)-\alpha_{4}(p_{2}f'')(a), \end{eqnarray} $

$ {\cal F} = (f, -M'(f), N'(f))^{T}, $

$ \begin{eqnarray} T{\cal F} = (\frac{l(f)}{w}, M(f), -N(f))^{T} = (\lambda f, -\lambda M'(f), \lambda N'(f))^{T} = \lambda {\cal F}. \end{eqnarray} $

因此, 我们可以通过在$ H $中讨论算子方程$ T{\cal F} = \lambda {\cal F} $来研究问题(2.1)–(2.9).

3 算子$ T $的自共轭性

由算子$ T $的定义可知:

引理3.1   边值问题(2.1)–(2.9) 的特征值与$ T $的特征值相同, 特征函数是算子$ T $的相应向量特征函数的第一个分量.

引理3.2  算子$ T $的定义域$ D(T) $$ H $中是稠密的.

  设$ {\cal F} = (f(x), h_{1}, h_{2})^{T}\in H, $$ {\cal F}\perp D(T), $并且令$ \widetilde{C^{\infty}_{0}} $表示下列函数的集合

其中, $ \varphi_{1}(x)\in C^{\infty}_{0}[a, c), \varphi_{2}(x)\in C^{\infty}_{0}(c, b]. $于是, $ \widetilde{C^{\infty}_{0}}\oplus\{0\}\oplus\{0\} \subset D(T), (0\in {\mathbb C}). $$ {\cal U} = (u(x), 0, 0)^{T}\in \widetilde{C^{\infty}_{0}}\oplus\{0\}\oplus\{0\}, $$ {\cal F}\perp {\cal U}. $

$ f(x) $$ H_{1} $中正交于$ \widetilde{C^{\infty}_{0}}, $$ f(x) $为零. 设$ {\cal G} = (g(x), k_{1}, 0)^{T}\in \widetilde{C^{\infty}_{0}}\oplus\{0\} (\widetilde{C^{\infty}_{0}}\oplus\{0\}\subset\widetilde{C^{\infty}_{0}}\oplus\{0\}\oplus\{0\}), $$ \langle {\cal F}, {\cal G}\rangle = \langle f, g\rangle _{1}+\eta\rho_{1}h_{1}\overline{k}_{1} = 0, $由于$ k_{1} = -M'(g) $是任意选取的, 故$ h_{1} = 0. $又设$ {\cal G} = (g(x), 0, k_{2})^{T}\in D(T), $$ \langle {\cal F}, {\cal G}\rangle = \langle f, g\rangle_{1}+\eta\rho_{2}h_{2}\overline{k}_{2} = 0, $由于$ k_{2} = N'(g) $是任意选取的, 故$ h_{2} = 0. $于是$ {\cal F} = (0, 0, 0)^{T}. $所以, 与$ D(T) $正交的只有零元素, 从而证得$ D(T) $$ H $中是稠密的.

定理3.1   线性算子$ T $是定义在$ H $上的自共轭算子.

  对任意的$ {\cal F}, {\cal G}\in D(T), $由分部积分法可得

其中

$ \begin{eqnarray} [f, g](x)& = &f(x)((p_{2}\overline{g}'')'-p_{1}\overline{g}')(x)-f'(x)(p_{2}\overline{g}'')(x){}\\ &&+(p_{2}f'')(x)\overline{g}'(x)-((p_{2}f'')'-p_{1}f')(x)\overline{g}(x) {} \\ & = &-G^{\ast}(x)J_{0}F(x), \end{eqnarray} $

$ G^{\ast} $表示向量$ G $的共轭转置, $ G = (g, g', p_{2}g'', (p_{2}g'')'-p_{1}g')^{T}. $

$ l_{3}f = 0, l_{3}\overline{g} = 0, $可知$ f(b)((p_{2}\overline{g}'')'-p_{1}\overline{g}')(b)-((p_{2}f'')'-p_{1}f') (b)\overline{g}(b) = 0. $再由$ l_{4}f = 0, l_{4}\overline{g} = 0, $可知$ f'(b)(p_{2}\overline{g}'')(b) -(p_{2}f'')(b)\overline{g}'(b) = 0. $因此, $ [f, g](b) = 0. $由(2.10)式和(2.11) 式分别可以得到如下的(3.2) 式和(3.3) 式

$ \begin{equation} \rho_{1}(M'(f)M(\overline{g})-M(f)M'(\overline{g})) = -f(a)((p_{2}\overline{g}'')'-p_{1}\overline{g}')(a) +((p_{2}f'')'-p_{1}f')(a)\overline{g}(a), \end{equation} $

$ \begin{equation} \rho_{2}(N'(f)N(\overline{g})-N(f)N'(\overline{g})) = f'(a)(p_{2}\overline{g}'')(a)-(p_{2}f'')(a)\overline{g}'(a). \end{equation} $

再由(3.2)和(3.3) 式得

由转移条件(2.6) 知

$ \begin{eqnarray} F(c-) = -C^{-1}D F(c+), {\quad} G^{\ast}(c-) = -G^{\ast}(c+)D^{\ast}(C^{\ast})^{-1}, \end{eqnarray} $

将(3.4) 式代入(3.1) 式并结合(2.9) 式可得

$ \begin{eqnarray} \eta[f, g](c-) = -\eta G^{\ast}(c+)D^{\ast}(C^{\ast})^{-1}J_{0}C^{-1}DF(c+) = \xi[f, g](c+), \end{eqnarray} $

因此, $ \langle T{\cal F}, {\cal G}\rangle = \langle {\cal F}, T{\cal G}\rangle, $故算子$ T $是对称的. 接下来根据自伴算子的定义证明算子$ T $是自伴的.

下面只需证明: 若对任意的$ {\cal F} = (f(x), -M'(f), N'(f))^{T}\in D(T), $$ \langle T{\cal F}, {\cal Z}\rangle = \langle {\cal F}, {\cal U}\rangle $成立, 则$ {\cal Z}\in D(T) $$ T{\cal Z} = {\cal U}. $其中, $ {\cal Z} = (z(x), m_{1}, m_{2})^{T}, {\cal U} = (u(x), n_{1}, n_{2})^{T}, $

($ \rm{i} $) $ z(x), z'(x), (p_{2}z'')(x), ((p_{2}z'')'-p_{1}z')(x)\in AC_{loc}(J), \frac{l(z)}{w}\in H_{1}; $

($ \rm{ii} $) $ m_{1} = -M'(z) = -[\alpha_{1}z(a)-\alpha_{2}((p_{2}z'')'-p_{1}z')(a)], m_{2} = N'(z) = \alpha_{3}z'(a)-\alpha_{4}(p_{2}z'')(a); $

($ \rm{iii} $) $ l_{i}z = 0, i = 3, 4; $

($ \rm{iv} $) $ u(x) = \frac{l(z)(x)}{w}; $

($ \rm{v} $) $ CZ(c-)+DZ(c+) = 0; $

($ \rm{vi} $) $ n_{1} = M(z) = \beta_{1}z(a)-\beta_{2}((p_{2}z'')'-p_{1}z')(a), n_{2} = -N(z) = -(\beta_{3}z'(a)-\beta_{4}(p_{2}z'')(a)). $

对任意的$ {\cal F}\in \widetilde{C^{\infty}_{0}}\oplus\{0\}\oplus\{0\}\subset D(T), $$ \langle T{\cal F}, {\cal Z}\rangle = \langle {\cal F}, {\cal U}\rangle $

$ \begin{equation} \langle \frac{l(f)}{w}, z\rangle_{1} = \langle f, u\rangle_{1}, \end{equation} $

由标准的Sturm-Liouville理论可知$ z(x)\in D(T), $故($ \rm{i} $) 成立.

因为算子$ T $是对称的, 所以有$ \langle T{\cal F}, {\cal Z}\rangle = \langle {\cal F}, T{\cal Z}\rangle, $再由上述$ {\cal F} $的取法可得$ \langle \frac{l(f)}{w}, z\rangle_{1} = \langle f, \frac{l(z)}{w}\rangle_{1}, $因此结合(3.6) 式可得$ \langle f, \frac{l(z)}{w}\rangle_{1} = \langle f, u\rangle_{1}, $即($ \rm{iv} $) 成立.

再由($ \rm{iv} $) 可知, 对任意的$ {\cal F}\in D(T) $方程$ \langle T{\cal F}, {\cal Z}\rangle = \langle {\cal F}, {\cal U}\rangle $即为

于是

因此结合(3.1) 式有

$ \begin{eqnarray} &&-\eta\rho_{1}(M(f)\overline{m}_{1}+M'(f)\overline{n}_{1})+\eta\rho_{2}(N(f)\overline{m}_{2} +N'(f)\overline{n}_{2}){}\\ & = &-\eta[f, z](c-)+\eta[f, z](a)-\xi[f, z](b)+\xi[f, z](c+){}\\ & = &\eta Z^{\ast}(c-)J_{0}F(c-)-\eta Z^{\ast}(a)J_{0}F(a)+\xi Z^{\ast}(b)J_{0}F(b)-\xi Z^{\ast}(c+)J_{0}F(c+). \end{eqnarray} $

根据引理2.1, 存在函数$ {\cal F}\in D(T), $使得

$ \begin{eqnarray} F(b) = F(c-) = F(c+) = 0, \end{eqnarray} $

此时, $ M'(f) = N(f) = N'(f) = 0, M(f) = -\theta_{1}, $于是, 由(3.7) 式可知

同理可证$ m_{2} = N'(z). $事实上, 存在函数$ {\cal F}\in D(T), $使得(3.8) 成立且满足

由(3.7) 式可知$ m_{2} = N'(z) = \alpha_{3}z'(a)-\alpha_{4}(p_{2}z'')(a). $则($ \rm{ii} $) 成立. (vi) 证明类似.

下面证明($ \rm{iii} $) 成立, 选取函数$ {\cal F}\in D(T), $使得

此时, 由(3.7) 式可得$ l_{3}z = 0. $同理可得$ l_{4}z = 0. $则($ \rm{iii} $) 成立.

下面证明($ \rm{v} $) 成立, 选取函数$ {\cal F}\in D(T), $使得

$ \begin{equation} f'(c-) = (p_{2}f'')(c-) = ((p_{2}f'')'-p_{1}f')(c-) = 0, f(c-)\neq 0, \end{equation} $

则由(3.7) 式有

$ \begin{eqnarray} &&-\eta f(c-)((p_{2}\overline{z}'')'-p_{1}\overline{z}')(c-)+\xi[f(c+)((p_{2}\overline{z}'')'-p_{1}\overline{z}')(c+){}\\ &&-f'(c+)(p_{2}\overline{z}'')(c+)+(p_{2}f'')(c+)\overline{z}'(c+)-((p_{2}f'')'-p_{1}f')(c+)\overline{z}(c+)] = 0, \end{eqnarray} $

因为$ f\in D(T), $$ f $满足转移条件$ C\cdot F(c-)+D\cdot F(c+) = 0, $从而有

$ \begin{eqnarray} F(c+) = -D^{-1}CF(c-) = -\frac{1}{\xi^{2}}D^{\star}C\cdot F(c-) , \end{eqnarray} $

其中

$ N_{ij} $$ d_{ij} $的余子式, $ D^{\star} $为矩阵$ D $的伴随矩阵. 将(3.11) 式中的$ f(c+), f'(c+), (p_{2}f'')(c+), $$ ((p_{2}f'')'-p_{1}f')(c+) $代入(3.10) 式, 并结合(3.9) 式整理得

$ \begin{eqnarray} ((p_{2}\overline{z}'')'-p_{1}\overline{z}')(c-) & = &-\frac{1}{\xi\eta}[-(-c_{11}N_{14}+c_{21}N_{24}-c_{31}N_{34}+c_{41}N_{44})\overline{z}(c+){}\\ &&+(c_{11}N_{13}-c_{21}N_{23}+c_{31}N_{33}-c_{41}N_{43})\overline{z}'(c+){}\\ &&-(-c_{11}N_{12}+c_{21}N_{22}-c_{31}N_{32}+c_{41}N_{42})(p_{2}\overline{z}'')(c+){}\\ &&+(c_{11}N_{11}-c_{21}N_{21}+c_{31}N_{31}-c_{41}N_{41})((p_{2}\overline{z}'')'-p_{1}\overline{z}')(c+)].{\qquad} \end{eqnarray} $

同理, 与上述方法一样, 令$ f(c-) = (p_{2}f'')(c-) = ((p_{2}f'')'-p_{1}f')(c-) = 0, f'(c-)\neq 0, $我们可以得到

$ \begin{eqnarray} (p_{2}\overline{z}'')(c-)& = &\frac{1}{\xi\eta}[-(-c_{12}N_{14}+c_{22}N_{24}-c_{32}N_{34}+c_{42}N_{44})\overline{z}(c+){}\\ &&+(c_{12}N_{13}-c_{22}N_{23}+c_{32}N_{33}-c_{42}N_{43})\overline{z}'(c+){}\\ &&-(-c_{12}N_{12}+c_{22}N_{22}-c_{32}N_{32}+c_{42}N_{42})(p_{2}\overline{z}'')(c+){}\\ &&+(c_{12}N_{11}-c_{22}N_{21}+c_{32}N_{31}-c_{42}N_{41})((p_{2}\overline{z}'')'-p_{1}\overline{z}')(c+)]. \end{eqnarray} $

$ f(c-) = f'(c-) = ((p_{2}f'')'-p_{1}f')(c-) = 0, (p_{2}f'')(c-)\neq 0, $我们可以得到

$ \begin{eqnarray} \overline{z}'(c-)& = &-\frac{1}{\xi\eta}[-(-c_{13}N_{14}+c_{23}N_{24}-c_{33}N_{34}+c_{43}N_{44})\overline{z}(c+){}\\ &&+(c_{13}N_{13}-c_{23}N_{23}+c_{33}N_{33}-c_{43}N_{43})\overline{z}'(c+){}\\ &&-(-c_{13}N_{12}+c_{23}N_{22}-c_{33}N_{32}+c_{43}N_{42})(p_{2}\overline{z}'')(c+){}\\ &&+(c_{13}N_{11}-c_{23}N_{21}+c_{33}N_{31}-c_{43}N_{41})((p_{2}\overline{z}'')'-p_{1}\overline{z}')(c+)]. \end{eqnarray} $

$ f(c-) = f'(c-) = (p_{2}f'')(c-) = 0, ((p_{2}f'')'-p_{1}f')(c-)\neq 0, $我们可以得到

$ \begin{eqnarray} \overline{z}(c-)& = &\frac{1}{\xi\eta}[-(-c_{14}N_{14}+c_{24}N_{24}-c_{34}N_{34}+c_{44}N_{44})\overline{z}(c+){}\\ &&+(c_{14}N_{13}-c_{24}N_{23}+c_{34}N_{33}-c_{44}N_{43})\overline{z}'(c+){}\\ &&-(-c_{14}N_{12}+c_{24}N_{22}-c_{34}N_{32}+c_{44}N_{42})(p_{2}\overline{z}'')(c+){}\\ &&+(c_{14}N_{11}-c_{24}N_{21}+c_{34}N_{31}-c_{44}N_{41})((p_{2}\overline{z}'')'-p_{1}\overline{z}')(c+)]. \end{eqnarray} $

结合(3.12)–(3.15) 式得

根据$ D^{\star} = \xi^{2}D^{-1}, J_{0}^{T} = -J_{0} $和(2.9) 式有

综上所述, 线性算子$ T $$ H $中是自共轭的.

由自共轭算子的性质可知:

推论3.1   边值问题(2.1)–(2.9) 的特征值是实的.

推论3.2   设$ \lambda_{1} $$ \lambda_{2} $是算子$ T $的两个特征值, 且$ \lambda_{1}\neq\lambda_{2}, $则相应的特征函数$ f(x) $$ g(x) $在下述意义下是正交的:

但是, 在通常意义下, 算子$ T $对应的两个不同特征值的特征向量不是正交的.

4 特征值和特征函数的连续性

根据常微分理论中解的存在唯一性定理, 给出边值问题(2.1)–(2.9) 特征值存在的充分必要条件.

为了方便, 我们记边界条件(2.2) 和(2.3) 中的有关系数$ \alpha_{i}, \beta_{i}\ (i = 1, 2, 3, 4) $为矩阵

且记边界条件(2.2)–(2.5) 的矩阵形式为

$ \begin{equation} A_{\lambda}Y(a)+BY(b) = 0, \end{equation} $

其中

接下来我们给出特征值所满足的判别函数.

$ \psi_{11}, \psi_{12} $$ \psi_{13}, \psi_{14} $是方程(2.1) 在区间[$ a, c $) 满足如下初始条件的线性无关解

其中$ E $是四阶单位矩阵, $ \Psi_{1j}(x) = (\psi_{1j}(x), \psi_{1j}'(x), p_{2}\psi''_{1j}(x), ((p_{2}\psi_{1j}'')'-p_{1}\psi_{1j}')(x))^{T} $$ (j = 1, 2, 3, 4). $它们的Wronskian与变量$ x $无关, 且是关于特征参数$ \lambda $的整函数.

$ \psi_{21}, \psi_{22} $$ \psi_{23}, \psi_{24} $是方程(2.1) 在区间$ (c, b] $满足如下初始条件的线性无关解

其中$ \Psi_{2j}(x) = (\psi_{2j}(x), \psi_{2j}'(x), p_{2}\psi''_{2j}(x), ((p_{2}\psi_{2j}'')' -p_{1}\psi_{2j}')(x))^{T}, $$ (j = 1, 2, 3, 4). $且令

引理4.1   一个复数$ \lambda $是算子$ T $的特征值当且仅当$ \lambda $满足

$ \Delta(\lambda) $为判别函数.

  这与文献[12, Theorem 3.1] 讨论的边界条件两端含有特征参数的证明过程类似, 因此省略.

接下来, 我们引入Banach空间及相应的范数. 比较任意参数发生微小改变时不同问题的谱的变化, 给出特征值和特征函数对边值问题(2.1)–(2.9) 的参数是连续依赖的. 为此我们令

且令$ \widetilde{\Omega} = \{\widetilde{\omega} = (\widetilde{1/p_{2}}, \widetilde{p_{1}}, \widetilde{q}, \widetilde{w}, a, b, \gamma, c-, c+, A, C, D)\}, $其中

$ \widetilde{p_{1}}, \widetilde{q}, \widetilde{w} $可类似定义.

引入一个Banach空间

及范数

其中$ ||\cdot|| $是任意的矩阵范数. 易知, $ \Omega $中的每一点是$ \Omega $中关于$ X $中范数的聚点. 由于$ 1/p_{2}, p_{1}, q, w $仅仅都属于$ L^{1}_{loc}(J'), $$ \Omega $不是$ X $的子集, 而$ \widetilde{1/p_{2}}, \widetilde{p_{1}}, \widetilde{q}, \widetilde{w} $属于$ L^{1}(J'), $$ \widetilde{\Omega} $$ X $的子集. 由$ \Omega $中范数的定义可知, $ \Omega $$ \widetilde{\Omega} $$ X $中有相同的范数, 都是$ X $的子集, 且$ \Omega $中的收敛性由此范数决定. 从而我们得到四阶边值问题(2.1)–(2.9) 特征值与特征函数连续依赖于问题.

定理4.1   令$ \omega_{0} = (1/p_{2_{0}}, p_{1_{0}}, q_{0}, w_{0}, a_{0}, b_{0}, \gamma_{0}, c_{0}-, c_{0}+, A_{0}, C_{0}, D_{0})\in\Omega, $$ \mu = \lambda(\omega_{0}) $为由$ \omega_{0} $确定的算子$ T $的特征值, 则$ \lambda $$ \omega_{0} $处是连续的. 即对$ \forall \varepsilon>0, \exists \delta>0, $使得对任意的$ \omega\in\Omega, $$ ||\omega-\omega_{0}||<\delta $时, 有$ |\lambda(\omega)-\lambda(\omega_{0})|<\varepsilon. $

  令$ \Delta(\lambda) = \Delta(\omega, \lambda) = {\rm det}(A_{\lambda}+B\Phi(b, \lambda)). $由引理4.1可知, 问题的特征值正是判别函数的零点. 对$ \omega\in\Omega, \lambda(\omega) $是算子$ T $的特征值当且仅当$ \Delta(\omega, \lambda(\omega)) = 0. $对于$ \forall \omega\in\Omega, \Delta(\omega, \lambda) $$ \lambda $的整函数且在$ \omega $处连续(见文献[33, Theorem 2.7, 2.8]). 又由算子$ T $的自伴性可知, $ \mu $是孤立特征值, 从而$ \Delta(\omega_{0}, \mu) = 0 $$ \Delta(\omega_{0}, \lambda) $关于$ \lambda $不是常数, 因此, $ \exists \rho>0, $$ \lambda\in S_{\rho}: = \{\lambda\in {\mathbb C}: |\lambda-\mu| = \rho\}, \Delta(\omega_{0}, \lambda)\neq0. $由方程解对初值和参数的连续性定理(见文献[34, p248, (9.17.4)]), 即可得定理.

引理4.2   假设(2.7)–(2.9) 成立, $ t_{0}\in [a, c)\cup(c, b] \cup\{c+, c-\}, d, k, m, n\in{\mathbb C}. $初值问题

的唯一解$ y = y(\cdot, t_{0}, d, k, m, n, C, D, 1/p_{2}, p_{1}, q, w) $是关于任一变量的连续函数. 即对$ \forall \varepsilon>0, $$ \exists \delta>0, $

则对$ \forall x\in J $

  可参考文献[15, Lemma 3.2], 虽然本文讨论的边界条件含有谱参数, 但证明过程类似.

引理4.3   假设$ \omega_{0} = (1/p_{2_{0}}, p_{1_{0}}, q_{0}, w_{0}, a_{0}, b_{0}, \gamma_{0}, c_{0}-, c_{0}+, A_{0}, C_{0}, D_{0})\in\Omega, \lambda = \lambda(\omega) $是算子$ T $的一个特征值. 若$ \lambda(\omega_{0}) $是单重特征值, 则在$ \Omega $中存在$ \omega_{0} $的邻域$ M, $满足对$ \forall \omega\in M, \lambda(\omega) $是单重特征值.

  若$ \lambda(\omega_{0}) $是单重特征值, 则$ \Delta'(\lambda(\omega_{0}))\neq0 $. 因为$ \Delta(\lambda) $$ \lambda $的整函数, 由定理4.1可知结论成立.

定义4.1   设$ u $满足边值问题(2.1)–(2.6), $ u_{1} = -M'(u), u_{2} = N'(u), $且有

$ \begin{equation} \eta\int_{a}^{c}u\overline{u}w{\rm d}x+\xi\int_{c}^{b}u\overline{u}w{\rm d}x+\eta\rho_{1}u_{1}\overline{u}_{1}+\eta\rho_{2}u_{2}\overline{u}_{2} = 1 \end{equation} $

成立, 则称$ (u, u_{1}, u_{2})^{T} $为正规化特征向量.

定理4.2   假设记号同定理4.1. 设特征值$ \lambda(\omega) (\omega\in \Omega) $$ \Omega $$ \omega_{0} $的某个邻域$ M $内所有$ \omega $$ l\ (l = 1, 2, 3, 4) $重特征值, 令$ (u_{k}(x, \omega_{0}), u_{k1}(\omega_{0}), u_{k2}(\omega_{0}))^{T}\in H, $$ k = 1, 2, \cdots, l $是算子$ T $对应于$ l $重特征值$ \lambda(\omega_{0}) (\omega_{0}\in \Omega) $的线性无关的正规化特征向量. 则存在$ l $个对应于特征值$ \lambda(\omega) $的线性无关的正规化特征向量$ (u_{k}(x, \omega), u_{k1}(\omega), u_{k2}(\omega))^{T}\in H, k = 1, 2, \cdots, l, $使得在$ \Omega $中当$ \omega\rightarrow \omega_{0} $时有

$ \begin{eqnarray} &&u_{k}(x, \omega)\rightarrow u_{k}(x, \omega_{0}), u_{k}'(x, \omega)\rightarrow u_{k}'(x, \omega_{0}), (p_{2}u_{k}'')(x, \omega)\rightarrow (p_{2}u_{k}'')(x, \omega_{0}), {}\\ &&((p_{2}u_{k}'')'-p_{1}u_{k}')(x, \omega)\rightarrow ((p_{2}u_{k}'')'-p_{1}u_{k}')(x, \omega_{0}), \\ &&u_{k1}(\omega)\rightarrow u_{k1}(\omega_{0}), u_{k2}(\omega)\rightarrow u_{k2}(\omega_{0}){} \end{eqnarray} $

在区间$ J $上一致成立.

  设$ \lambda(\omega_{0}) $是算子$ T $的单重特征值, $ (y(x, \omega_{0}), y_{1}(\omega_{0}), y_{2}(\omega_{0}))^{T}\in H $是其对应的特征向量, 且满足

由引理4.3可知, 存在一个$ \omega_{0} $的邻域$ M $使得对任意的$ \omega\in M, \lambda(\omega) $是单重的. 根据定理4.1知, 当$ \omega\rightarrow \omega_{0} $$ \lambda(\omega)\rightarrow \lambda(\omega_{0}) $成立. 当$ \omega\rightarrow \omega_{0} $时, 边界条件矩阵满足$ (A_{\lambda}, B)_{4\times8}(\omega)\rightarrow (A_{\lambda}, B)_{4\times8}(\omega_{0}). $由文献[4, Theorem 3.2] 可知, 当$ \omega\rightarrow \omega_{0} $时, 存在特征值$ \lambda(\omega) $对应的特征向量$ (y(x, \omega), y_{1}(\omega), y_{2}(\omega))^{T}\in H, $使其第一个分量$ y(x, \omega) $在区间$ J $上满足

$ \begin{eqnarray} &&\| y(x, \omega)\|^{2} = \eta\int_{a}^{c}| y(x, \omega)|^{2}w{\rm d}x+\xi\int_{c}^{b}| y(x, \omega)|^{2}w{\rm d}x = 1, {}\\ &&y(x, \omega)\rightarrow y(x, \omega_{0}), y'(x, \omega)\rightarrow y'(x, \omega_{0}), (p_{2}y'')(x, \omega)\rightarrow (p_{2}y'')(x, \omega_{0}), \\ &&((p_{2}y'')'-p_{1}y')(x, \omega)\rightarrow ((p_{2}y'')'-p_{1}y')(x, \omega_{0}).{} \end{eqnarray} $

所以当$ \omega\rightarrow \omega_{0} $

$ \begin{equation} y_{1}(\omega)\rightarrow y_{1}(\omega_{0}), y_{2}(\omega)\rightarrow y_{2}(\omega_{0}). \end{equation} $

下面令$ \lambda(\omega_{0}) $对应的正规化特征向量$ (u(x, \omega_{0}), u_{1}(\omega_{0}), u_{2}(\omega_{0}))^{T} $及第一个分量的导数$ u'(x, \omega_{0}) $和拟导数$ (p_{2}u'')(x, \omega_{0}), ((p_{2}u'')'-p_{1}u')(x, \omega_{0}) $分别为

$ \begin{eqnarray} &&(u(x, \omega_{0}), u_{1}(\omega_{0}), u_{2}(\omega_{0}))^{T} = \frac{(y(x, \omega_{0}), y_{1}(\omega_{0}), y_{2}(\omega_{0}))^{T}}{\|(y(x, \omega_{0}), y_{1}(\omega_{0}), y_{2}(\omega_{0}))^{T}\|}, \end{eqnarray} $

$ \begin{eqnarray} &&u'(x, \omega_{0}) = \frac{y'(x, \omega_{0})}{\|(y(x, \omega_{0}), y_{1}(\omega_{0}), y_{2}(\omega_{0}))^{T}\|}, \end{eqnarray} $

$ \begin{eqnarray} &&(p_{2}u'')(x, \omega_{0}) = \frac{(p_{2}y'')(x, \omega_{0})}{\|(y(x, \omega_{0}), y_{1}(\omega_{0}), y_{2}(\omega_{0}))^{T}\|}, \end{eqnarray} $

$ \begin{eqnarray} &&((p_{2}u'')'-p_{1}u')(x, \omega_{0}) = \frac{((p_{2}y'')'-p_{1}y')(x, \omega_{0})}{\|(y(x, \omega_{0}), y_{1}(\omega_{0}), y_{2}(\omega_{0}))^{T}\|}. \end{eqnarray} $

对于$ \lambda(\omega) $对应的正规化特征向量$ (u(x, \omega), u_{1}(\omega), u_{2}(\omega))^{T} $及其第一个分量的导数$ u'(x, \omega) $和拟导数$ (p_{2}u'')(x, \omega), ((p_{2}u'')'-p_{1}u')(x, \omega) $形式与(4.6)–(4.9) 式类似. 再由(4.4)–(4.5) 式知结论成立.

设特征值$ \lambda(\omega) $关于$ \omega_{0}\in\Omega $的某个邻域$ M\subset\Omega $内的所有$ \omega $的重数为$ l (l = 2, 3, 4), $由定理4.1和文献[8, p181, Theorem 3.5] 可知, 当$ \omega\rightarrow \omega_{0} $时, 存在$ l $个线性无关的特征向量$ (y_{k}(x, \omega), y_{k1}(\omega), y_{k2}(\omega))^{T}\in H, k = 1, 2, \cdots, l, $使其第一个分量$ y_{k}(x, \omega) $在区间$ J $上满足

$ \begin{eqnarray} &&\| y_{k}(x, \omega)\|^{2} = \eta\int_{a}^{c}| y_{k}(x, \omega)|^{2}w{\rm d}x+\xi\int_{c}^{b}| y_{k}(x, \omega)|^{2}w{\rm d}x = 1, {}\\ &&y_{k}(x, \omega)\rightarrow y_{k}(x, \omega_{0}), y_{k}'(x, \omega)\rightarrow y_{k}'(x, \omega_{0}), (p_{2}y_{k}'')(x, \omega)\rightarrow (p_{2}y_{k}'')(x, \omega_{0}), \\ &&((p_{2}y_{k}'')'-p_{1}y_{k}')(x, \omega)\rightarrow ((p_{2}y_{k}'')'-p_{1}y_{k}')(x, \omega_{0}).{} \end{eqnarray} $

通过类似上面的讨论得定理结论.

5 特征值的可微性

在特征值与特征函数关于问题连续依赖性的基础上, 进一步考虑特征值关于问题所有参数的可微性, 即给出特征值关于各个参数的微分表达式. 为此, 我们将用到Fr$ \acute{\rm{e}} $chet导数, 定义如下:

定义5.1[4]  设 $ {\cal T} $是从Banach空间$ {\mathbb X} $到Banach空间$ {\mathbb Y} $上的映射, 若存在有界线性算子$ d{\cal T}_{x}:{\mathbb X}\rightarrow {\mathbb Y} $, 对$ h\in {\mathbb X}, $$ h\rightarrow 0 $时, 有

则称映射$ {\cal T} $在点$ x\in {\mathbb X} $处是Fr$ \acute{\rm{e}} $chet可微的.

引理5.1   设函数$ u $$ v $分别为方程(2.1) 对应于特征值$ \lambda = \mu $$ \lambda = \nu $的特征函数, 则

$ \begin{eqnarray} & &(\nu-\mu)[\eta\int_{a}^{c}u\overline{v}w{\rm d}x+\xi\int_{c}^{b}u\overline{v}w{\rm d}x+\eta\rho_{1}u_{1}\overline{v}_{1}+\eta\rho_{2}u_{2}\overline{v}_{2}]{}\\ & = &\eta[u, v]_{a}^{c}+\xi[u, v]_{c}^{b}+\eta\rho_{1}[-M'(u)M(\overline{v})+M(u)M'(\overline{v})]+\eta\rho_{2}[-N'(u)N(\overline{v})+N(u)N'(\overline{v})]{}\\ & = &\eta[u, v](c-)-\eta[u, v](a)+\xi[u, v](b)-\xi[u, v](c+){}\\ & &+\eta\rho_{1}[-M'(u)M(\overline{v})+M(u)M'(\overline{v})]+\eta\rho_{2}[-N'(u)N(\overline{v})+N(u)N'(\overline{v})]. \end{eqnarray} $

  由分部积分的方法可得.

引理5.2[5]   假设函数$ f\in L_{loc}(a', b'), $

$ \begin{eqnarray} \lim\limits_{h\rightarrow0}\frac{1}{h}\int_{x}^{x+h}f = f(x) {\quad} a.e.\ (a', b'). \end{eqnarray} $

  见文献[5, Lemma 3.2].

定理5.1   令$ \omega = (1/p_{2}, p_{1}, q, w, a, b, \gamma, c-, c+, A, C, D)\in\Omega, $$ \lambda = \lambda(\omega) $是算子$ T $的特征值, $ (u, u_{1}, u_{2})^{T} $是相应的正规化特征向量. 若$ \lambda(\omega) $$ \omega $的某邻域$ M\subset\Omega $内的几何重数不变, 则$ \lambda $关于边界条件参数$ \gamma, $特征参数依赖的边值条件矩阵$ A $及转移条件的系数矩阵$ C, D $和方程系数函数$ 1/p_{2}, p_{1}, q, w $都是可微的且导数公式如下:

1. 固定$ \omega $中除$ \gamma $之外的所有变量, 令$ \lambda = \lambda(\gamma) $为特征值, 则$ \lambda $是可微的且有

$ \begin{eqnarray} \lambda'(\gamma) = \xi\csc^{2}\gamma(|u'(b)|^{2}-|u(b)|^{2}). \end{eqnarray} $

2. 固定$ \omega $中除$ A $之外的所有变量, 令$ \lambda = \lambda(A) $为特征值, 则$ \lambda $是Fr$ \acute{\rm{e}} $chet可微的且有

$ \begin{equation} d \lambda_{A}(L) = -\eta(u, -u', p_{2}u'', -((p_{2}u'')'-p_{1}u'))(a)[E-A(A+L)^{-1}] \left(\begin{array}{ccccc} (p_{2}\overline{u}'')'-p_{1}\overline{u}'\\ p_{2}\overline{u}''\\ \overline{u}'\\ \overline{u}\end{array}\right)(a), \end{equation} $

其中$ L $满足$ {\rm det}(A+L) = {\rm det}A = -\theta_{1}\theta_{2}. $

3. 固定$ \omega $中除$ C $之外的所有变量, 在$ C $的邻域内, 对所有满足det$ (C+H) = \eta^{2}, $$ \xi (C+H)J_{0}(C+H)^{T} = \eta DJ_{0}D^{T} $$ H, \lambda $是Fr$ \acute{\rm{e}} $chet可微的且有

$ \begin{eqnarray} {\rm d}\lambda_{C}(H) = \xi U^{\ast}(c+)J_{0}^{-1}D^{-1}HC^{-1}DU(c+). \end{eqnarray} $

4. 固定$ \omega $中除$ D $之外的所有变量, 在$ D $的邻域内, 对所有满足det$ (D+H) = \xi^{2}, $$ \xi CJ_{0}C^{T} = \eta(D+H)J_{0}(D+H)^{T} $$ H, \lambda $是Fr$ \acute{\rm{e}} $chet可微的且有

$ \begin{eqnarray} {\rm d}\lambda_{D}(H) = -\eta U^{\ast}(c-)J_{0}^{-1}C^{-1}HD^{-1}CU(c-). \end{eqnarray} $

5. 固定$ \omega $中除$ 1/p_{2} $之外的所有变量, 令$ \lambda = \lambda(1/p_{2}) $为特征值, 则$ \lambda $是Fr$ \acute{\rm{e}} $chet可微的且有

$ \begin{eqnarray} {\rm d}\lambda_{(1/p_{2})}(h) = -\eta\int_{a}^{c}|p_{2}u''|^{2}h{\rm d}x-\xi\int_{c}^{b}|p_{2}u''|^{2}h{\rm d}x, \, \, \, h\in L^{1}(a, b). \end{eqnarray} $

6. 固定$ \omega $中除$ p_{1} $之外的所有变量, 令$ \lambda = \lambda(p_{1}) $为特征值, 则$ \lambda $是Fr$ \acute{\rm{e}} $chet可微的且有

$ \begin{eqnarray} {\rm d}\lambda_{p_{1}}(h) = \eta\int_{a}^{c}|u'|^{2}h{\rm d}x+\xi\int_{c}^{b}|u'|^{2}h{\rm d}x, \, \, \, h\in L^{1}(a, b). \end{eqnarray} $

7. 固定$ \omega $中除$ q $之外的所有变量, 令$ \lambda = \lambda(q) $为特征值, 则$ \lambda $是Fr$ \acute{\rm{e}} $chet可微的且有

$ \begin{eqnarray} {\rm d}\lambda_{q}(h) = \eta\int_{a}^{c}|u|^{2}h{\rm d}x+\xi\int_{c}^{b}|u|^{2}h{\rm d}x, \, \, \, h\in L^{1}(a, b). \end{eqnarray} $

8. 固定$ \omega $中除$ w $之外的所有变量, 令$ \lambda = \lambda(w) $为特征值, 则$ \lambda $是Fr$ \acute{\rm{e}} $chet可微的且有

$ \begin{eqnarray} {\rm d}\lambda_{w}(h) = -\eta\lambda\int_{a}^{c}|u|^{2}h{\rm d}x-\xi\lambda\int_{c}^{b}|u|^{2}h{\rm d}x, \, \, \, h\in L^{1}(a, b). \end{eqnarray} $

  1. 取$ \varepsilon $充分小, 令特征值$ \mu = \lambda(\gamma), \nu = \lambda(\gamma+\varepsilon) $对应的正规化特征向量分别为$ (u, u_{1}, u_{2})^{T}, (v, v_{1}, v_{2})^{T}, $其中$ u = u(x, \gamma), v = u(x, \gamma+\varepsilon), $由(2.1) 式我们有

$ \begin{equation} (p_{2}u'')''-(p_{1}u')'+qu = \lambda(\gamma)wu, \end{equation} $

$ \begin{equation} (p_{2}\overline{v}'')''-(p_{1}\overline{v}')'+q\overline{v} = \lambda(\gamma+\varepsilon)w\overline{v}, \end{equation} $

根据(5.11) 式和(5.12) 式有

$ \begin{eqnarray} [\lambda(\gamma+\varepsilon)-\lambda(\gamma)]u\overline{v}w = [(p_{2}\overline{v}'')''- (p_{1}\overline{v}')']u-[(p_{2}u'')''-(p_{1}u')']\overline{v}, \end{eqnarray} $

将(5.13) 式分别从$ a $$ c $$ c $$ b $积分且使用分部积分法, 我们得到

$ \begin{eqnarray} &&[\lambda(\gamma+\varepsilon)-\lambda(\gamma)][\eta\int_{a}^{c}u\overline{v}w{\rm d}x+\xi\int_{c}^{b}u\overline{v}w{\rm d}x]{}\\ & = &\eta\bigg[\int_{a}^{c}[(p_{2}\overline{v}'')''-(p_{1}\overline{v}')']u{\rm d}x-\int_{a}^{c}[(p_{2}u'')''-(p_{1}u')']\overline{v}{\rm d}x\bigg]{}\\ &&+\xi\bigg[\int_{c}^{b}[(p_{2}\overline{v}'')''-(p_{1}\overline{v}')']u{\rm d}x-\int_{c}^{b}[(p_{2}u'')''-(p_{1}u')']\overline{v}{\rm d}x\bigg]{}\\ & = &\eta[u, v](c-)-\eta[u, v](a)+\xi[u, v](b)-\xi[u, v](c+). \end{eqnarray} $

由边界条件(2.2) 我们得到

因此

$ \begin{eqnarray} & &[\lambda(\gamma+\varepsilon)-\lambda(\gamma)]\eta\rho_{1}u_{1}\overline{v}_{1}{}\\ & = &\eta\rho_{1}u_{1}(\beta_{1}\overline{v}(a)-\beta_{2}((p_{2}\overline{v}'')'-p_{1}\overline{v}')(a)) -\eta\rho_{1}(\beta_{1}u(a)-\beta_{2}((p_{2}u'')'-p_{1}u')(a))\overline{v}_{1}{}\\ & = &\eta[u(a)((p_{2}\overline{v}'')'-p_{1}\overline{v}')(a)-((p_{2}u'')'-p_{1}u')(a)\overline{v}(a)]. \end{eqnarray} $

再由边界条件(2.3), 我们得到

因此

$ \begin{eqnarray} &&[\lambda(\gamma+\varepsilon)-\lambda(\gamma)]\eta\rho_{2}u_{2}\overline{v}_{2}{}\\ & = &\eta\rho_{2}u_{2}(-\beta_{3}\overline{v}'(a)+\beta_{4}(p_{2}\overline{v}'')(a)) -\eta\rho_{2}(-\beta_{3}u'(a)+\beta_{4}(p_{2}u'')(a))\overline{v}_{2}{}\\ & = &-\eta[u'(a)(p_{2}\overline{v}'')(a)-(p_{2}u'')(a)\overline{v}'(a)]. \end{eqnarray} $

我们发现(5.15) 式与(5.16) 式的和正是$ \eta[u, v](a), $综合(5.14)–(5.16) 式及边界条件(2.4)–(2.5) 和(3.5) 式, 我们得到

上述等式两端同时除以$ \varepsilon, $$ \varepsilon\rightarrow 0 $时, 取其极限, 由定义4.1和定理4.2可得(5.3) 式成立.

2. 令特征值$ \mu = \lambda(A), \nu = \lambda(A+L) $对应的正规化特征向量分别为$ (u, u_{1}, u_{2})^{T}, $$ (v, v_{1}, v_{2})^{T}, $其中$ u = u(x, A), v = u(x, A+L), $直接计算得

$ \begin{eqnarray} &&[\lambda(A+L)-\lambda(A)][\eta\int_{a}^{c}u\overline{v}w{\rm d}x+\xi\int_{c}^{b}u\overline{v}w{\rm d}x] = -\eta[u, v](a){}\\ & = &-\eta(u, -u', p_{2}u'', -((p_{2}u'')'-p_{1}u'))(a)E \left(\begin{array}{ccccc} (p_{2}\overline{v}'')'-p_{1}\overline{v}'\\ p_{2}\overline{v}''\\ \overline{v}'\\ \overline{v}\end{array}\right)(a). \end{eqnarray} $

$ A+L = \left(\begin{array}{ccccc} \widetilde{\alpha_{1}}&0&0&\ \widetilde{\beta_{1}}\\ 0&\ \widetilde{\alpha_{3}}\ &\widetilde{\beta_{3}}&\ 0\\ 0&\widetilde{\alpha_{4}}&\widetilde{\beta_{4}}&\ 0\\ \widetilde{\alpha_{2}}&0&0&\ \widetilde{\beta_{2}}\end{array}\right) $, 然后根据边界条件(2.2) 得

将(i)–(ii) 式的右端整理成如下矩阵形式

$ \begin{eqnarray} &&[\lambda(A+L)-\lambda(A)]\eta\rho_{1}u_{1}\overline{v}_{1}{}\\ & = &\eta\rho_{1}u_{1}(\widetilde{\beta_{1}}\overline{v}(a)-\widetilde{\beta_{2}}((p_{2}\overline{v}'')'-p_{1}\overline{v}')(a)) -\eta\rho_{1}(\beta_{1}u(a)-\beta_{2}((p_{2}u'')'-p_{1}u')(a))\overline{v}_{1}{}\\ & = &\eta\rho_{1}(u, -u', p_{2}u'', -((p_{2}u'')'-p_{1}u'))(a) \left(\begin{array}{ccccc} -\alpha_{1}\\0\\0\\ -\alpha_{2}\end{array}\right) (-\widetilde{\beta_{2}}, 0, 0, \widetilde{\beta_{1}}) \left(\begin{array}{ccccc}(p_{2}\overline{v}'')'-p_{1}\overline{v}'\\p_{2}\overline{v}''{\nonumber}\\ \overline{v}'\\ \overline{v}\end{array}\right)(a){}\\ &&+\eta\rho_{1}(u, -u', p_{2}u'', -((p_{2}u'')'-p_{1}u'))(a) \left(\begin{array}{ccccc}-\beta_{1}\\0\\0\\ -\beta_{2} \end{array}\right)(\widetilde{\alpha_{2}}, 0, 0, -\widetilde{\alpha_{1}}) \left(\begin{array}{ccccc} (p_{2}\overline{v}'')'-p_{1}\overline{v}'\\p_{2}\overline{v}''\\ \overline{v}'{\nonumber}\\ \overline{v}\end{array}\right)(a){}\\ & = &\eta\rho_{1}(u, -u', p_{2}u'', -((p_{2}u'')'-p_{1}u'))(a){}\\ &&\cdot\left(\begin{array}{ccccc} \alpha_{1}\widetilde{\beta_{2}}-\beta_{1}\widetilde{\alpha_{2}}&\ 0\ &0&\ -\alpha_{1}\widetilde{\beta_{1}}+\beta_{1}\widetilde{\alpha_{1}}\\ 0&0&0&\ 0\\ 0&0&0&\ 0\\ \alpha_{2}\widetilde{\beta_{2}}-\beta_{2}\widetilde{\alpha_{2}}&0&0& \ -\alpha_{2}\widetilde{\beta_{1}}+\beta_{2}\widetilde{\alpha_{1}}\end{array}\right) \left(\begin{array}{ccccc} (p_{2}\overline{v}'')'-p_{1}\overline{v}'\\p_{2}\overline{v}''\\ \overline{v}'\\ \overline{v}\end{array}\right)(a). \end{eqnarray} $

同理根据边界条件(2.3), 同(i)–(ii) 式方法类似也整理得如下矩阵形式

$ \begin{eqnarray} &&[\lambda(A+L)-\lambda(A)]\eta\rho_{2}u_{2}\overline{v}_{2}{}\\ & = &\eta\rho_{2}u_{2}(-\widetilde{\beta_{3}}\overline{v}'(a)+\widetilde{\beta_{4}}(p_{2}\overline{v}'')(a)) -\eta\rho_{2}(-\beta_{3}u'(a)+\beta_{4}(p_{2}u'')(a))\overline{v}_{2}{}\\ & = &\eta\rho_{2}(u, -u', p_{2}u'', -((p_{2}u'')'-p_{1}u'))(a)\left(\begin{array}{ccccc}0\\ -\alpha_{3}\\ -\alpha_{4}\\0\end{array}\right)(0, \widetilde{\beta_{4}}, -\widetilde{\beta_{3}}, 0)\left(\begin{array}{ccccc}(p_{2}\overline{v}'')'-p_{1}\overline{v}'\\p_{2}\overline{v}''\\ \overline{v}'\\ \overline{v}\end{array}\right)(a){}\\ &&+\eta\rho_{2}(u, -u', p_{2}u'', -((p_{2}u'')'-p_{1}u'))(a)\left(\begin{array}{ccccc}0\\ -\beta_{3}\\ -\beta_{4}\\0\end{array}\right)(0, -\widetilde{\alpha_{4}}, \widetilde{\alpha_{3}}, 0)\left(\begin{array}{ccccc}(p_{2}\overline{v}'')'-p_{1}\overline{v}'\\p_{2}\overline{v}''\\ \overline{v}'\\ \overline{v}\end{array}\right)(a){}\\ & = &\eta\rho_{2}(u, -u', p_{2}u'', -((p_{2}u'')'-p_{1}u'))(a){}\\ &&\cdot\left(\begin{array}{ccccc}0&0&0&0\\ 0&\ -\alpha_{3}\widetilde{\beta_{4}}+\beta_{3}\widetilde{\alpha_{4}}\ & \alpha_{3}\widetilde{\beta_{3}}-\beta_{3}\widetilde{\alpha_{3}}&\ 0\\ 0&-\alpha_{4}\widetilde{\beta_{4}} +\beta_{4}\widetilde{\alpha_{4}}& \alpha_{4}\widetilde{\beta_{3}}-\beta_{4}\widetilde{\alpha_{3}}&\ 0\\ 0&0&0&\ 0\end{array}\right) \left(\begin{array}{ccccc}(p_{2}\overline{v}'')'-p_{1}\overline{v}'\\p_{2}\overline{v}''\\ \overline{v}'\\ \overline{v}\end{array}\right)(a). \end{eqnarray} $

结合(5.17)–(5.19) 式, 我们得到

$ L\rightarrow0 $, 由定义4.1和定理4.2可得到(5.4) 式成立.

3. 令特征值$ \mu = \lambda(C), $$ \nu = \lambda(C+H) $对应的正规化特征向量分别为$ (u, u_{1}, u_{2})^{T}, $$ (v, v_{1}, v_{2})^{T}, $其中$ u = u(x, C), v = u(x, C+H), $我们有

$ \begin{eqnarray} &&[\lambda(C+H)-\lambda(C)][\eta\int_{a}^{c}u\overline{v}w{\rm d}x+\xi\int_{c}^{b}u\overline{v}w{\rm d}x+\eta\rho_{1}u_{1}\overline{v}_{1}+\eta\rho_{2}u_{2}\overline{v}_{2}]{}\\ & = &\eta[u, v](c-)-\xi[u, v](c+){}\\ & = &\eta((p_{2}\overline{v}'')'-p_{1}\overline{v}', -p_{2}\overline{v}'', \overline{v}', -\overline{v})(c-)U(c-){}\\ &&-\xi((p_{2}\overline{v}'')'-p_{1}\overline{v}', -p_{2}\overline{v}'', \overline{v}', -\overline{v})(c+)U(c+), \end{eqnarray} $

$ \xi(C+H)J_{0}(C+H)^{T} = \eta DJ_{0}D^{T} $可得$ \frac{\xi}{\eta}D^{-1}(C+H)J_{0}(C+H)^{T} = J_{0}D^{T}, $因此

$ \begin{eqnarray} &&((p_{2}\overline{v}'')'-p_{1}\overline{v}', -p_{2}\overline{v}'', \overline{v}', -\overline{v})(c-){}\\ & = &(\overline{v}, \overline{v}', p_{2}\overline{v}'', (p_{2}\overline{v}'')'-p_{1}\overline{v}')(c-)J_{0}^{-1}{}\\ & = &-(\overline{v}, \overline{v}', p_{2}\overline{v}'', (p_{2}\overline{v}'')'-p_{1}\overline{v}')(c+)D^{\ast}[(C+H)^{\ast}]^{-1}J_{0}^{-1}{}\\ & = &-((p_{2}\overline{v}'')'-p_{1}\overline{v}', -p_{2}\overline{v}'', \overline{v}', -\overline{v})(c+)J_{0}D^{T}[(C+H)^{T}]^{-1}J_{0}^{-1}{}\\ & = &-\frac{\xi}{\eta}V^{\ast}(c+)J_{0}^{-1}D^{-1}(C+H), \end{eqnarray} $

将(5.21) 式代入(5.20) 式可得

$ H\rightarrow0 $, 由Fr$ \acute{\rm{e}} $chet导数的定义得(5.5) 式成立. 对(5.6) 式的证明类似, 因此省略.

4. 取$ h $充分小, 令特征值$ \mu = \lambda(\frac{1}{p_{2}}), $$ \nu = \lambda(\frac{1}{p_{2h}}) $对应的正规化特征向量分别为$ (u, u_{1}, u_{2})^{T}, $$ (v, v_{1}, v_{2})^{T}, $其中$ u = u(x, \frac{1}{p_{2}}), $$ v = u(x, \frac{1}{p_{2h}}), $$ \frac{1}{p_{2h}} = \frac{1}{p_{2}}+h, $$ h\in L^{1}(a, b), $$ p_{2}-p_{2h} = p_{2}p_{2h} h. $

由(2.1) 式和分部积分法得

根据边界条件(2.2) 和(2.3) 有

再结合边界条件(2.4), (2.5) 和(3.5) 式可得

$ h\rightarrow0 $, 由定义4.1和定理4.2知, (5.7) 式成立.

5. 取$ h $充分小, 令特征值$ \mu = \lambda(p_{1}), $$ \nu = \lambda(p_{1}+h) $对应的正规化特征向量分别为$ (u, u_{1}, u_{2})^{T}, $$ (v, v_{1}, v_{2})^{T}, $其中$ u = u(x, p_{1}), v = u(x, p_{1}+h), $

根据边界条件(2.2) 和(2.3) 有

再由边界条件(2.4), (2.5) 及(3.5) 式, 并用分部积分法可得

$ h\rightarrow0 $, 由定义4.1和定理4.2知, (5.8) 式成立. (5.9)和(5.10) 式证明与此类似, 省略.

接下来我们考虑$ \lambda $关于$ c-, c+ $的微分表达式, 令$ c_{1} = c-, c_{2} = c+, $然后有

定理5.2   令(2.7)–(2.9) 式成立, $ \omega = (1/p_{2}, p_{1}, q, w, a, b, \gamma, c-, c+, A, C, D)\in\Omega, $$ \lambda = \lambda(\omega) $是算子$ T $的特征值, $ (u, u_{1}, u_{2})^{T} $是相应的正规化特征向量. 若$ \lambda(\omega) $$ \omega $的某个邻域$ M\subset\Omega $内的几何重数不变, 则$ \lambda $关于内部不连续点$ c $左右两侧是可微的且有如下表达式:

1. 固定$ \omega $中除$ c_{1} $之外的所有变量, 令$ \lambda = \lambda(c_{1}) $为特征值, 则$ \lambda $是可微的且有

$ \begin{eqnarray} \lambda'(c_{1}) = \eta(U')^{\ast}(c_{1}, c_{1})J_{0}U(c_{1}, c_{1}){\quad} a.e.\ c_{1}\in[a, c). \end{eqnarray} $

特别地, 如果$ p_{2}^{-1}, p_{1}, q, w $$ c_{1} $处连续且$ p_{2}(c_{1})\neq0, $则(5.22) 式在$ c_{1} $处也成立. 其中, $ U' $表示向量$ U $的导数.

2. 固定$ \omega $中除$ c_{2} $之外的所有变量, 令$ \lambda = \lambda(c_{2}) $为特征值, 则$ \lambda $是可微的且有

$ \begin{eqnarray} \lambda'(c_{2}) = -\xi(U')^{\ast}(c_{2}, c_{2})J_{0}U(c_{2}, c_{2}) {\quad} a.e.\ c_{2}\in(c, b]. \end{eqnarray} $

特别地, 如果$ p_{2}^{-1}, p_{1}, q, w $$ c_{2} $处连续且$ p_{2}(c_{2})\neq0, $则(5.23) 式在$ c_{2} $处也成立.

  因为(5.22)和(5.23) 式证明类似, 我们只证明(5.22) 式. 让$ |h| $充分小($ h<0 $), 令特征值$ \mu = \lambda(c_{1}), \nu = \lambda(c_{1}+h) $对应的正规化特征向量分别为$ (u, u_{1}, u_{2})^{T}, (v, v_{1}, v_{2})^{T}, $其中$ u = u(x, c_{1}), v = u(x, c_{1}+h), $我们有

$ \begin{eqnarray} &&[\lambda(c_{1}+h)-\lambda(c_{1})][\eta\int_{a}^{c}u\overline{v}w{\rm d}x+\xi\int_{c}^{b}u\overline{v}w{\rm d}x+\eta\rho_{1}u_{1}\overline{v}_{1}+\eta\rho_{2}u_{2}\overline{v}_{2}]{}\\ & = &\eta[u, v](c-)-\xi[u, v](c+){}\\ & = &\eta\big\{u(c_{1}, c_{1})[((p_{2}\overline{u}'')'-p_{1}\overline{u}')(c_{1}, c_{1}+h)-((p_{2}\overline{u}'')'-p_{1}\overline{u}')(c_{1}+h, c_{1}+h)]{}\\ &&-u'(c_{1}, c_{1})[(p_{2}\overline{u}'')(c_{1}, c_{1}+h)-(p_{2}\overline{u}'')(c_{1}+h, c_{1}+h)]{}\\ &&+(p_{2}u'')(c_{1}, c_{1})[\overline{u}'(c_{1}, c_{1}+h)-\overline{u}'(c_{1}+h, c_{1}+h)]{}\\ &&-((p_{2}u'')'-p_{1}u')(c_{1}, c_{1})[\overline{u}(c_{1}, c_{1}+h)-\overline{u}(c_{1}+h, c_{1}+h)]\big\}, \end{eqnarray} $

$ \begin{eqnarray} &&((p_{2}\overline{u}'')'-p_{1}\overline{u}')(c_{1}, c_{1}+h)-((p_{2}\overline{u}'')'-p_{1}\overline{u}')(c_{1}+h, c_{1}+h){}\\ & = &-\int_{c_{1}}^{c_{1}+h}[(p_{2}\overline{u}'')''-(p_{1}\overline{u}')'](s, c_{1}+h){\rm d}s{}\\ & = &-\int_{c_{1}}^{c_{1}+h}[\lambda(c_{1}+h)w(s)\overline{u}(s, c_{1}+h)-q(s)\overline{u}(s, c_{1}+h)]{\rm d}s{}\\ & = &-\lambda(c_{1}+h)\int_{c_{1}}^{c_{1}+h}w(s)\overline{u}(s, c_{1}){\rm d}s+\lambda(c_{1}+h)\int_{c_{1}}^{c_{1}+h}w(s)[\overline{u}(s, c_{1})-\overline{u}(s, c_{1}+h)]{\rm d}s{}\\ &&+\int_{c_{1}}^{c_{1}+h}q(s)\overline{u}(s, c_{1}){\rm d}s-\int_{c_{1}}^{c_{1}+h}q(s)[\overline{u}(s, c_{1}) -\overline{u}(s, c_{1}+h)]{\rm d}s \end{eqnarray} $

$ \begin{eqnarray} &&(p_{2}\overline{u}'')(c_{1}, c_{1}+h)-(p_{2}\overline{u}'')(c_{1}+h, c_{1}+h){}\\ & = &-\int_{c_{1}}^{c_{1}+h}(p_{2}\overline{u}'')'(s, c_{1}+h){\rm d}s{}\\ & = &-\int_{c_{1}}^{c_{1}+h}(p_{2}\overline{u}'')'(s, c_{1}){\rm d}s+ \int_{c_{1}}^{c_{1}+h}\{[((p_{2}\overline{u}'')'-p_{1}\overline{u}')(s, c_{1}){}\\ &&-((p_{2}\overline{u}'')'-p_{1}\overline{u}')(s, c_{1}+h)]-p_{1}[\overline{u}'(s, c_{1}+h)-\overline{u}'(s, c_{1})]\}{\rm d}s, \end{eqnarray} $

注意到当$ h\rightarrow 0 $时, (5.25) 和(5.26) 式中$ \overline{u}(s, c_{1})-\overline{u}(s, c_{1}+h)\rightarrow 0, ((p_{2}\overline{u}'')'-p_{1}\overline{u}')(s, c_{1})-((p_{2}\overline{u}'')'-p_{1}\overline{u}')(s, c_{1}+h)\rightarrow 0, \overline{u}'(s, c_{1}+h)-\overline{u}'(s, c_{1})\rightarrow 0, $由引理5.2可知

类似的

对(5.24) 式两边同时除以$ h, $并取极限$ h\rightarrow 0, $我们得到(5.22) 式.

定理5.3  令(2.7)–(2.9) 式成立, $ \gamma = \pi, \lambda = \lambda(\omega) $是算子$ T $的特征值, $ (u, u_{1}, u_{2})^{T} $是相应的正规化特征向量. 若$ \lambda(\omega) $$ \omega $的某个邻域$ M\subset\Omega $内的几何重数不变. 固定$ \omega $中除$ b $之外的所有变量, 令$ \lambda = \lambda(b) $为特征值, 则$ \lambda $是可微的且有

$ \begin{eqnarray} \lambda'(b) = \xi[-\frac{1}{p_{2}(b)}|p_{2}u''|^{2}(b, b)+((p_{2}u'')'-p_{1}u')(b, b)\overline{u}'(b, b)]{\quad} a.e.\ (c, b'). \end{eqnarray} $

特别地, 如果$ p_{2}^{-1}, p_{1} $$ b $处是连续的, $ p_{2}(b)\neq0, $则(5.27) 式在$ b $处也成立.

  让$ h $充分小, 令特征值$ \mu = \lambda(b), \nu = \lambda(b+h) $对应的正规化特征向量分别为$ (u, u_{1}, u_{2})^{T}, (v, v_{1}, v_{2})^{T}, $其中$ u = u(x, b), v = u(x, b+h) $. 由边界条件(2.4)–(2.5) 和(3.5) 式得到

我们有

$ \begin{eqnarray} &&[\lambda(b+h)-\lambda(b)][\eta\int_{a}^{c}u\overline{v}w{\rm d}x+\xi\int_{c}^{b}u\overline{v}w{\rm d}x+\eta\rho_{1}u_{1}\overline{v}_{1}+\eta\rho_{2}u_{2}\overline{v}_{2}]{}\\ & = &-\eta[u, v](a)+\xi[u, v](b)+\eta[u, v](a){}\\ & = &\xi[(p_{2}u'')(b, b)\overline{u}'(b, b+h)-((p_{2}u'')'-p_{1}u')(b, b)\overline{u}(b, b+h)], \end{eqnarray} $

其中

注意到当$ h\rightarrow0 $时, $ (p_{2}\overline{u}'')(s, b)-(p_{2}\overline{u}'')(s, b+h)\rightarrow0, $由引理5.2可知

类似的, 有

对(5.28) 式两边同时除以$ h, $并且取极限$ h\rightarrow0, $我们得到(5.27) 式.

定理5.4   令(2.7)–(2.9) 式成立, $ \gamma = \frac{\pi}{2}, \lambda = \lambda(\omega) $是算子$ T $的特征值, $ (u, u_{1}, u_{2})^{T} $是相应的正规化特征向量. 若$ \lambda(\omega) $$ \omega $的某个邻域$ M\subset\Omega $内的几何重数不变. 固定$ \omega $中除$ b $之外的所有变量, 令$ \lambda = \lambda(b) $为特征值, 则$ \lambda $是可微的且有

$ \begin{eqnarray} \lambda'(b) = \xi[-|u|^{2}(b, b)[\lambda(b)w(b)-q(b)]+u'(b, b)(p_{2}\overline{u}'')'(b, b)] {\quad} a.e.\ (c, b'). \end{eqnarray} $

特别地, 如果$ p_{2}, q, w $$ b $处是连续的, 则(5.29) 式在$ b $处也成立.

  让$ h $充分小, 令特征值$ \mu = \lambda(b), \nu = \lambda(b+h) $对应的正规化特征向量分别为$ (u, u_{1}, u_{2})^{T}, (v, v_{1}, v_{2})^{T}, $其中$ u = u(x, b), v = u(x, b+h) $. 由边界条件(2.4)–(2.5) 和(3.5) 式得到

我们有

$ \begin{eqnarray} &&[\lambda(b+h)-\lambda(b)][\eta\int_{a}^{c}u\overline{v}w{\rm d}x+\xi\int_{c}^{b}u\overline{v}w{\rm d}x+\eta\rho_{1}u_{1}\overline{v}_{1}+\eta\rho_{2}u_{2}\overline{v}_{2}]{}\\ & = &-\eta[u, v](a)+\xi[u, v](b)+\eta[u, v](a){}\\ & = &\xi[u(b, b)((p_{2}\overline{u}'')'-p_{1}\overline{u}')(b, b+h)-u'(b, b)(p_{2}\overline{u}'')(b, b+h)], \end{eqnarray} $

其中

注意到当$ h\rightarrow 0 $时, $ \overline{u}(s, b)-\overline{u}(s, b+h)\rightarrow0, $由引理5.2可知

类似的, 有

对(5.30) 式两边同时除以$ h, $并且取极限$ h\rightarrow0, $我们得到(5.29) 式.

定理5.5   令(2.7)–(2.9) 式成立, $ 0<\gamma\leq\pi, \lambda = \lambda(\omega) $是算子$ T $的特征值, $ (u, u_{1}, u_{2})^{T} $是相应的正规化特征向量. 若$ \lambda(\omega) $$ \omega $的某个邻域$ M\subset\Omega $内的几何重数不变, 则$ \lambda $关于边界点$ a, b $是可微的且有如下微分表达式:

1. 固定$ \omega $中除$ a $之外的所有变量, 令特征值$ \lambda = \lambda(a) $, 则$ \lambda $是可微的且有

$ \begin{eqnarray} \lambda'(a) = -\eta(U')^{\ast}(a, a)J_{0}U(a, a){\quad} a.e.\ (a', c). \end{eqnarray} $

特别地, 如果$ p_{2}^{-1}, p_{1}, q, w $$ a $处是连续的, $ p_{2}(a)\neq0, $则(5.31) 式在$ a $处也成立.

2. 固定$ \omega $中除$ b $之外的所有变量, 令特征值$ \lambda = \lambda(b) $, 则$ \lambda $是可微的且有

$ \begin{eqnarray} \lambda'(b) = \xi(U')^{\ast}(b, b)J_{0}U(b, b) {\quad} a.e.\ (c, b'). \end{eqnarray} $

特别地, 如果$ p_{2}^{-1}, p_{1}, q, w $$ b $处是连续的, $ p_{2}(b)\neq0, $则(5.32) 式在$ b $处也成立.

  显然(5.32) 式是(5.27) 式和(5.29) 式的结合, 且(5.31) 式的证明同(5.32) 式类似, 因此证明过程省略.

参考文献

Pöeschel J , Trubowitz E . Inverse Spectral Theory. New York: Academic Press, 1987

[本文引用: 1]

Dauge M , Helffer B .

Eigenvalues variation, I. Neumann problem for Sturm-Liouville operators

J Differ Equ, 1993, 104 (2): 243- 262

DOI:10.1006/jdeq.1993.1071      [本文引用: 1]

Dauge M , Helffer B .

Eigenvalues variation, Ⅱ. Multidimensional Problems

J Differ Equ, 1993, 104 (2): 263- 297

DOI:10.1006/jdeq.1993.1072      [本文引用: 1]

Kong Q K , Zettl A .

Eigenvalues of regular Sturm-Liouville problems

J Differ Equ, 1996, 131, 1- 19

DOI:10.1006/jdeq.1996.0154      [本文引用: 3]

Kong Q K , Zettl A .

Dependence of eigenvalues of Sturm-Liouville problems on the boundary

J Differ Equ, 1996, 126, 389- 407

DOI:10.1006/jdeq.1996.0056      [本文引用: 3]

Suo J Q , Wang W Y .

Eigenvalues of a class of regular fourth-order Sturm-Liouville problems

Appl Math Comput, 2012, 218 (19): 9716- 9729

[本文引用: 1]

Ge S Q , Wang W Y , Suo J Q .

Dependence of eigenvalues of a class of fourth-order Sturm-Liouville problems on the boundary

Appl Math Comput, 2013, 220, 268- 276

Kong Q K , Wu H Y , Zettl A .

Dependence of eigenvalues on the problems

Math Nachr, 1997, 188, 173- 201

DOI:10.1002/mana.19971880111      [本文引用: 1]

Zheng Z W , Ma Y J .

Dependence of eigenvalues of 2mth-order spectral problems

Bound Value Probl, 2017, 2017 (1): 126

DOI:10.1186/s13661-017-0857-y     

Yang Q X , Wang W Y , Gao X C , Rajendran S .

Dependence of eigenvalues of a class of higher-order Sturm-Liouville problems on the boundary

Math Probl Eng, 2015,

DOI:10.1155/2015/686102      [本文引用: 1]

李昆, 郑召文.

一类具有转移条件的Sturm-Liouville方程的谱性质

数学物理学报, 2015, 35A (5): 910- 926

DOI:10.3969/j.issn.1003-3998.2015.05.008      [本文引用: 1]

Li K , Zheng Z W .

Spectral properties for Sturm-Liouville equation with transmission conditions

Acta Math Sci, 2015, 35A (5): 910- 926

DOI:10.3969/j.issn.1003-3998.2015.05.008      [本文引用: 1]

Zhang X Y , Sun J .

A class of fourth-order differential operator with eigenparameter-dependent boundary and transmission conditions

Mathematica Applicata, 2013, 26 (1): 205- 219

[本文引用: 2]

Yang Q X , Wang W Y .

A class of fourth order differential operators with transmission conditions

Iran J Sci Technol, 2011, 35 (A4): 323- 332

[本文引用: 2]

Zhang M Z , Wang Y C .

Dependence of eigenvalues of Sturm-Liouville problems with interface conditions

Appl Math Comput, 2015, 265, 31- 39

[本文引用: 1]

Li K , Sun J , Hao X L .

Eigenvalues of regular fourth-order Sturm-Liouville problems with transmission conditions

Math Meth Appl Sci, 2017, 40, 3538- 3551

DOI:10.1002/mma.4243      [本文引用: 2]

Lv X X , Ao J J , Zettl A .

Dependence of eigenvalues of fourth-order differential equations with discontinuous boundary conditions on the problem

J Math Anal Appl, 2017, 456, 671- 685

DOI:10.1016/j.jmaa.2017.07.021     

Zinsou B .

Dependence of eigenvalues of fourth-order boundary value problems with transmission conditions

Rocky Mt J Math, 2020, 50 (1): 369- 381

Li K , Sun J , Hao X L .

Dependence of eigenvalues of 2nth order boundary value transmission problems

Bound Value Probl, 2017, 2017 (1): 143

DOI:10.1186/s13661-017-0876-8      [本文引用: 1]

Uǧurlu E .

Regular third-order boundary value problems

Appl Math Comput, 2019, 343, 247- 257

[本文引用: 1]

Zhu H , Shi Y M .

Dependence of eigenvalues on the boundary conditions of Sturm-Liouville problems with one singular endpoint

J Differ Equ, 2017, 263, 5582- 5609

DOI:10.1016/j.jde.2017.06.026     

Kong Q K , Wu H Y , Zettl A .

Left-definite Sturm-Liouville problems

J Differ Equ, 2001, 177, 1- 26

DOI:10.1006/jdeq.2001.3997     

玉林. 两类微分算子与Riesz基的研究[D]. 呼和浩特: 内蒙古大学, 2021: 9-33

[本文引用: 2]

Yu L. Research on Two Classes of Differential Operators and the Construction of Riesz Basis[D]. Hohhot: Inner Mongolia University, 2021: 9-33

[本文引用: 2]

Walter J .

Regular eigenvalue problems with eigenvalue parameter in the boundary condition

Math Z, 1973, 133, 301- 312

DOI:10.1007/BF01177870      [本文引用: 1]

Fulton C T .

Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions

Proc R Soc Edinb Sect A-Math, 1977, 77, 293- 308

DOI:10.1017/S030821050002521X      [本文引用: 1]

Mukhtarov O S , Aydemir K .

Eigenfunction expansion for Sturm-Liouville problems with transmission conditions at one interior point

Acta Math Sci, 2015, 35B (3): 639- 649

[本文引用: 1]

Code W J. Sturm-Liouville Problems with Eigenparameter Dependent Boundary Conditions[D]. Saskatoon: University of Saskatchewan, 2003

[本文引用: 1]

Altnisikn N , Kadakal M .

Eigenvalues and eigenfunctions of discontinuous Sturm-Liouville problems with eigenparameter-dependent boundary conditions

Acta Math Hung, 2004, 102, 159- 175

DOI:10.1023/B:AMHU.0000023214.99631.52      [本文引用: 1]

Birkhoff G D .

On the asymptotic character of solution of the certain linear differential equations containting a parameter

Trans Amer Math Soc, 1908, 9, 219- 231

DOI:10.1090/S0002-9947-1908-1500810-1     

Binding P A , Browne P J , Watson B A .

Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter Ⅱ

J Comput Appl Math, 2002, 148, 147- 169

DOI:10.1016/S0377-0427(02)00579-4     

Binding P A , Browne P J , Watson B A .

Transformation between Sturm-Liouville problems with eigenvalue dependent and independent boundary conditions

Bull London Math Soc, 2001, 33, 749- 757

DOI:10.1112/S0024609301008177      [本文引用: 1]

Zhang M Z , Li K .

Dependence of eigenvalues of Sturm-Liouville problems with eigenparameter dependent boundary conditions

Appl Math Comput, 2020, 378, 125214

[本文引用: 2]

Naimark M A. Linear Differential Operators. London: Harrap, 1968

[本文引用: 1]

Kong Q K, Zettl A. Linear ordinary differential equations//Agarwal R P. Inequalities and Applications. Singapore: World Scientific, 1994, 3: 381-397

[本文引用: 1]

Dieudonné J . Foundations of Modern Analysis. New York: Academis Press, 1969

[本文引用: 1]

/