1 |
CDC: Use of anthrax vaccine in the United States recommendations of the Advisory Committee on Immunization Practices (ACIP), 2009. Morb Mort Wkly Rep, 2010, 59(6): 1-36
|
2 |
Survely A N , Kvasnicka B , Torell R . Anthrax: a guide for livestock producers, Cattle producer's Library CL613. Western Beef Resource Committee, 2001, 613, 1- 3
|
3 |
Hahn B D , Furniss P R . A deterministic model of an anthrax epizootic: threshold results. Ecol Model, 1983, 20, 233- 241
doi: 10.1016/0304-3800(83)90009-1
|
4 |
Friedman A , Yakubu A A . Anthrax epizootic and migration: Persistence or extinction. Math Biosci, 2013, 241, 137- 144
doi: 10.1016/j.mbs.2012.10.004
|
5 |
Mushayabasa S , Marijani T , Masocha M . Dynamical analysis and control strategies in modeling anthrax. Comp Appl Math, 2017, 36, 1333- 1348
doi: 10.1007/s40314-015-0297-1
|
6 |
Mushayabasa S . Dynamics of an anthrax model with distributed delay. Acta Appl Math, 2016, 144, 77- 86
doi: 10.1007/s10440-016-0040-y
|
7 |
Saad-Roy C M , van den Driessche P , Yakubu A A . A mathematical model of anthrax transmission in animal populations. Bull Math Biol, 2017, 79, 303- 324
doi: 10.1007/s11538-016-0238-1
|
8 |
Lindeque P , Turnbull P . Ecology and epidemiology of anthrax in the Etosha National Park, Namibia. Onderstepoort J Vet, 1994, 61 (1): 71- 83
|
9 |
Lembo T , Hampson K , Authy H , et al. Serologic surveillance of anthrax in the Serengeti ecosystem, Tanzania, 1996-2009. Emerg Infect Dis, 2001, 17, 387- 394
|
10 |
Van den Driessche P , Yakubu A A . Disease extinction versus persistence in discrete-time epidemic models. Bull Math Biol, 2019, 81, 4412- 4446
doi: 10.1007/s11538-018-0426-2
|
11 |
Lou Y J , Zhao X Q . Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete Contin Dyn Syst Ser B, 2009, 12, 169- 186
|
12 |
Hale J K , Verduyn Lunel S M . Introduction to Functional Differential Equations. New York: Springer, 1993
|
13 |
Smith H L. Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Providence, RI: American Mathematical Society, 1995
|
14 |
Zhao X Q . Basic reproduction ratios for periodic compartmental models with time delay. J Dyn Differ Equ, 2017, 29, 67- 82
doi: 10.1007/s10884-015-9425-2
|
15 |
Walter W . On strongly monotone flows. Ann Polon Math, 1997, 66, 269- 274
doi: 10.4064/ap-66-1-269-274
|
16 |
Liang X , Zhao X Q . Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm Pure Appl Math, 2007, 60, 1- 40
doi: 10.1002/cpa.20154
|
17 |
Wang X N , Zhao X Q . Dynamics of a time-delayed Lyme disease model with seasonality. SIAM J Appl Dyn Syst, 2017, 16, 853- 881
doi: 10.1137/16M1087916
|
18 |
Zhao X Q . Dynamical Systems in Population Biology. New York: Springer, 2017
|
19 |
Magal P , Zhao X Q . Global attractors and steady states for uniformly persistent dynamical systems. SIAM J Math Anal, 2005, 37, 251- 275
doi: 10.1137/S0036141003439173
|
20 |
Yuan Y , Zhao X Q . Global stability for non-monotone delay equations (with application to a model of blood cell production). J Differ Equ, 2012, 252, 2189- 2209
doi: 10.1016/j.jde.2011.08.026
|
21 |
Lewerin S S, Elvander M, Westermark T, et al. Anthrax outbreak in a Swedish beef cattle herd-1st case in 27 years: Case report. Acta Vet Scand, 2010, 52, Article number: 7
|
22 |
Liang X , Zhang L , Zhao X Q . Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease). J Dyn Differ Equ, 2019, 31, 1247- 1278
doi: 10.1007/s10884-017-9601-7
|
23 |
World Health Organization . Anthrax in Humans and Aanimals. 4th edn Geneva: World Health Organization, 2008: 29
|