数学物理学报 ›› 2022, Vol. 42 ›› Issue (3): 749-759.
收稿日期:
2021-07-06
出版日期:
2022-06-26
发布日期:
2022-05-09
通讯作者:
尚旭东
E-mail:xudong-shang@163.com;Zhangjihui@njnu.edu.cn
作者简介:
张吉慧, E-mail: 基金资助:
Xudong Shang1,*(),Jihui Zhang2(
)
Received:
2021-07-06
Online:
2022-06-26
Published:
2022-05-09
Contact:
Xudong Shang
E-mail:xudong-shang@163.com;Zhangjihui@njnu.edu.cn
Supported by:
摘要:
该文研究如下一类非线性Choquard方程,
中图分类号:
尚旭东,张吉慧. 一类非线性Choquard方程基态解的存在性[J]. 数学物理学报, 2022, 42(3): 749-759.
Xudong Shang,Jihui Zhang. Existence of Positive Ground State Solutions for the Choquard Equation[J]. Acta mathematica scientia,Series A, 2022, 42(3): 749-759.
1 |
Alves C O , Yang M B . Existence of semiclassical ground state solutions for a generalized Choquard equation. J Differential Equations, 2014, 257, 4133- 4164
doi: 10.1016/j.jde.2014.08.004 |
2 | Alves C O , Figueiredo G M , Yang M B . Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity. Adv Nonlinear Anal, 2016, 5, 331- 345 |
3 |
Alves C O , Gao F S , Squassina M , Yang M B . Singularly perturbed critical Choquard equations. J Differential Equations, 2017, 263, 3943- 3988
doi: 10.1016/j.jde.2017.05.009 |
4 |
Cingolani S , Tanaka K . Semi-classical states for the nonlinear Choquard equations: existence, multiplicity and concentration at a potential well. Rev Mat Iberoam, 2019, 35, 1885- 1924
doi: 10.4171/rmi/1105 |
5 |
Diósi L . Gravitation and quantum-mechanical localization of macro-objects. Phys Lett A, 1984, 105, 199- 202
doi: 10.1016/0375-9601(84)90397-9 |
6 |
Guo L , Hu T X . Multi-bump solutions for nonlinear Choquard equation with potentials wells and a general nonlinearity. Acta Math Sci, 2020, 40, 316- 340
doi: 10.1007/s10473-020-0202-x |
7 |
Ghimenti M , Van Schaftingen J . Nodal solutions for the Choquard equation. J Funct Anal, 2016, 271, 107- 135
doi: 10.1016/j.jfa.2016.04.019 |
8 |
Jeanjean L . On the existence of bounded Palais-Smale sequence and application to a Landesman-Lazer type problem set on ![]() ![]() doi: 10.1017/S0308210500013147 |
9 |
Jones K R W . Newtonian quantum gravity. Aust J Phys, 1995, 48, 1055- 1082
doi: 10.1071/PH951055 |
10 |
Jeanjean L , Tanaka K . A positive solution for a nonlinear Schrödinger equation on ![]() ![]() ![]() doi: 10.1512/iumj.2005.54.2502 |
11 |
Li G B , Ye H . Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in ![]() ![]() ![]() doi: 10.1016/j.jde.2014.04.011 |
12 |
Liu X N , Ma S W , Zhang Z . Infinitely many bound state solutions of Choquard equations with potentials. Z Angew Math Phys, 2018, 69, 118
doi: 10.1007/s00033-018-1015-9 |
13 |
Lieb E H . Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud Appl Math, 1977, 57, 93- 105
doi: 10.1002/sapm197757293 |
14 | Lieb E H , Loss M . Analysis. Providence, RI: American Mathematical Society, 1997 |
15 |
Lions P L . The concentration-compactness method in the calculus of variations. The locally compact case, parts 1 and 2. Ann Inst H Poincaré Anual Non Linéair, 1984, 1, 109- 145
doi: 10.1016/s0294-1449(16)30428-0 |
16 |
Lions P L . The Choquard equation and related questions. Nonlinear Anal, 1980, 4, 1063- 1072
doi: 10.1016/0362-546X(80)90016-4 |
17 |
Luo H X . Ground state solutions of Pohozaev type and Nehari type foraclass of nonlinear Choquard equations. J Math Anal Appl, 2018, 467, 842- 862
doi: 10.1016/j.jmaa.2018.07.055 |
18 |
Moroz I M , Penrose R , Tod P . Spherically-symmetric solutions of the Schrödinger-Newton equations. Class Quantum Gravity, 1998, 15, 2733- 2742
doi: 10.1088/0264-9381/15/9/019 |
19 |
Moroz V , Van Schaftingen J . Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265, 153- 184
doi: 10.1016/j.jfa.2013.04.007 |
20 | Moroz V , Van Schaftingen J . Existence of Groundstates for a class of nonlinear Choquard equations. Trans Amer Math Soc, 2015, 367, 6557- 6579 |
21 |
Ma L , Zhao L . Classification of positive solitary solutions of the nonlinear Choquard equation. Arch Ration Mech Anal, 2010, 195, 455- 467
doi: 10.1007/s00205-008-0208-3 |
22 | Pekar S . Untersuchung über die Elektronentheorie der Kristalle. Berlin: Akademie Verlag, 1954 |
23 |
Penrose R . On gravity's role in quantum state reduction. Gen Relativ Gravitat, 1996, 28, 581- 600
doi: 10.1007/BF02105068 |
24 |
Riesz M . L'intégrale de Riemann Liouville et le probléme de Cauchy. Acta Math, 1949, 81, 1- 223
doi: 10.1007/BF02395016 |
25 | Wang J , Qu M M , Xiao L . Existence of positive solutions to the nonlinear Choquard equation with competing potentials. Electron J Differ Equ, 2018, 63, 1- 21 |
26 | Xia J K, Wang Z Q. Saddle solutions for the Choquard equation. Calc Var, 2019, 58, Artile: 85 |
27 |
Zhang H , Xu J X , Zhang F B . Existence and multiplicity of solutions for a generalized Choquard equation. Comput Math Appl, 2017, 73, 1803- 1814
doi: 10.1016/j.camwa.2017.02.026 |
28 |
Zhao L G , Zhao F K . On the existence of solutions for the Schrödinger-Poisson equations. J Math Anal Appl, 2008, 346, 155- 169
doi: 10.1016/j.jmaa.2008.04.053 |
[1] | 熊晨,高琦. 一类耦合Ginzburg-Landau系统的局部极小解[J]. 数学物理学报, 2023, 43(2): 321-340. |
[2] | 李德科, 王青选. 质量临界非齐次薛定谔方程在门槛值处的极限行为[J]. 数学物理学报, 2023, 43(1): 123-131. |
[3] | 李安然,樊丹丹,魏重庆. 临界零质量Kirchhoff型方程的解及其渐近行为[J]. 数学物理学报, 2022, 42(6): 1729-1743. |
[4] | 陈琳,刘范琴. 分数阶临界Choquard方程的多解[J]. 数学物理学报, 2022, 42(6): 1682-1704. |
[5] | 张鹏辉,韩志清. 一类带临界指标的非自治Kirchhoff型方程非平凡解的存在性[J]. 数学物理学报, 2022, 42(5): 1424-1432. |
[6] | 段誉,孙歆. 渐近线性Klein-Gordon-Maxwell系统正解的存在性[J]. 数学物理学报, 2022, 42(4): 1103-1111. |
[7] | 王亚男,滕凯民. 带Choquard项的拟线性薛定谔方程的基态解[J]. 数学物理学报, 2022, 42(3): 730-748. |
[8] | 吉蕾,廖家锋. 一类带临界指数的Kirchhoff型问题正基态解的存在性[J]. 数学物理学报, 2022, 42(2): 418-426. |
[9] | 张伟强,赵培浩. 分数阶Choquard方程正解的存在性、多重性和集中现象[J]. 数学物理学报, 2022, 42(2): 470-490. |
[10] | 杨连峰,曾小雨. 拟相对论薛定谔方程基态解的存在性与爆破行为[J]. 数学物理学报, 2022, 42(1): 165-175. |
[11] | 陈鹏. 一类反应扩散方程的Nehari-Pankov型基态解[J]. 数学物理学报, 2021, 41(5): 1347-1356. |
[12] | 杨先勇,唐先华,顾光泽. 带有临界增长或超临界增长的分数阶Choquard方程解的存在性和多重性[J]. 数学物理学报, 2021, 41(3): 702-722. |
[13] | 成艺群,滕凯民. 非线性临界Kirchhoff型问题的正基态解[J]. 数学物理学报, 2021, 41(3): 666-685. |
[14] | 贾小尧,娄振洛. Hénon型椭圆系统多个非径向对称解的存在性[J]. 数学物理学报, 2021, 41(3): 723-728. |
[15] | 任晶,翟成波. 基于变分法的回火分数阶脉冲微分系统分析[J]. 数学物理学报, 2021, 41(2): 415-426. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 228
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 164
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|