1 |
Alves C O , Yang M B . Existence of semiclassical ground state solutions for a generalized Choquard equation. J Differential Equations, 2014, 257, 4133- 4164
doi: 10.1016/j.jde.2014.08.004
|
2 |
Alves C O , Figueiredo G M , Yang M B . Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity. Adv Nonlinear Anal, 2016, 5, 331- 345
|
3 |
Alves C O , Gao F S , Squassina M , Yang M B . Singularly perturbed critical Choquard equations. J Differential Equations, 2017, 263, 3943- 3988
doi: 10.1016/j.jde.2017.05.009
|
4 |
Cingolani S , Tanaka K . Semi-classical states for the nonlinear Choquard equations: existence, multiplicity and concentration at a potential well. Rev Mat Iberoam, 2019, 35, 1885- 1924
doi: 10.4171/rmi/1105
|
5 |
Diósi L . Gravitation and quantum-mechanical localization of macro-objects. Phys Lett A, 1984, 105, 199- 202
doi: 10.1016/0375-9601(84)90397-9
|
6 |
Guo L , Hu T X . Multi-bump solutions for nonlinear Choquard equation with potentials wells and a general nonlinearity. Acta Math Sci, 2020, 40, 316- 340
doi: 10.1007/s10473-020-0202-x
|
7 |
Ghimenti M , Van Schaftingen J . Nodal solutions for the Choquard equation. J Funct Anal, 2016, 271, 107- 135
doi: 10.1016/j.jfa.2016.04.019
|
8 |
Jeanjean L . On the existence of bounded Palais-Smale sequence and application to a Landesman-Lazer type problem set on $\mathbb{R} ^{N}$. Proc Roy Soc Edinburgh Sect A, 1999, 129, 787- 809
doi: 10.1017/S0308210500013147
|
9 |
Jones K R W . Newtonian quantum gravity. Aust J Phys, 1995, 48, 1055- 1082
doi: 10.1071/PH951055
|
10 |
Jeanjean L , Tanaka K . A positive solution for a nonlinear Schrödinger equation on $\mathbb{R} .{N}$. Indiana Univ Math J, 2005, 54, 443- 464
doi: 10.1512/iumj.2005.54.2502
|
11 |
Li G B , Ye H . Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R} .{3}$. J Differential Equations, 2014, 257, 566- 600
doi: 10.1016/j.jde.2014.04.011
|
12 |
Liu X N , Ma S W , Zhang Z . Infinitely many bound state solutions of Choquard equations with potentials. Z Angew Math Phys, 2018, 69, 118
doi: 10.1007/s00033-018-1015-9
|
13 |
Lieb E H . Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud Appl Math, 1977, 57, 93- 105
doi: 10.1002/sapm197757293
|
14 |
Lieb E H , Loss M . Analysis. Providence, RI: American Mathematical Society, 1997
|
15 |
Lions P L . The concentration-compactness method in the calculus of variations. The locally compact case, parts 1 and 2. Ann Inst H Poincaré Anual Non Linéair, 1984, 1, 109- 145
doi: 10.1016/s0294-1449(16)30428-0
|
16 |
Lions P L . The Choquard equation and related questions. Nonlinear Anal, 1980, 4, 1063- 1072
doi: 10.1016/0362-546X(80)90016-4
|
17 |
Luo H X . Ground state solutions of Pohozaev type and Nehari type foraclass of nonlinear Choquard equations. J Math Anal Appl, 2018, 467, 842- 862
doi: 10.1016/j.jmaa.2018.07.055
|
18 |
Moroz I M , Penrose R , Tod P . Spherically-symmetric solutions of the Schrödinger-Newton equations. Class Quantum Gravity, 1998, 15, 2733- 2742
doi: 10.1088/0264-9381/15/9/019
|
19 |
Moroz V , Van Schaftingen J . Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265, 153- 184
doi: 10.1016/j.jfa.2013.04.007
|
20 |
Moroz V , Van Schaftingen J . Existence of Groundstates for a class of nonlinear Choquard equations. Trans Amer Math Soc, 2015, 367, 6557- 6579
|
21 |
Ma L , Zhao L . Classification of positive solitary solutions of the nonlinear Choquard equation. Arch Ration Mech Anal, 2010, 195, 455- 467
doi: 10.1007/s00205-008-0208-3
|
22 |
Pekar S . Untersuchung über die Elektronentheorie der Kristalle. Berlin: Akademie Verlag, 1954
|
23 |
Penrose R . On gravity's role in quantum state reduction. Gen Relativ Gravitat, 1996, 28, 581- 600
doi: 10.1007/BF02105068
|
24 |
Riesz M . L'intégrale de Riemann Liouville et le probléme de Cauchy. Acta Math, 1949, 81, 1- 223
doi: 10.1007/BF02395016
|
25 |
Wang J , Qu M M , Xiao L . Existence of positive solutions to the nonlinear Choquard equation with competing potentials. Electron J Differ Equ, 2018, 63, 1- 21
|
26 |
Xia J K, Wang Z Q. Saddle solutions for the Choquard equation. Calc Var, 2019, 58, Artile: 85
|
27 |
Zhang H , Xu J X , Zhang F B . Existence and multiplicity of solutions for a generalized Choquard equation. Comput Math Appl, 2017, 73, 1803- 1814
doi: 10.1016/j.camwa.2017.02.026
|
28 |
Zhao L G , Zhao F K . On the existence of solutions for the Schrödinger-Poisson equations. J Math Anal Appl, 2008, 346, 155- 169
doi: 10.1016/j.jmaa.2008.04.053
|