In this paper, we consider a Ginzburg-Landau functional for a complex vector order parameter $\Psi=[\psi_+, \psi_-]$. In particular, we consider entire solutions in all ${\Bbb R}^2$, which are obtained by blowing up around vortices. Among the entire solutions we distinguish those which are locally minimizing solutions, and we show that locally minimizing solutions must have degrees $n_\pm \in \{0, \pm1\}$. By studying the local structure of these solutions, we also show that one component of the solution vanishes, but the other does not, which describes the coreless vortex phenomenon in physics.