Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (2): 447-457.
Previous Articles Next Articles
Liao Dan1,2,Zhang Huiping3,Yao Wangjin1,2,*()
Received:
2021-08-27
Revised:
2022-09-20
Online:
2023-04-26
Published:
2023-04-17
Supported by:
CLC Number:
Liao Dan, Zhang Huiping, Yao Wangjin. Variational Approach to Existence of Multiple Solutions for Neumann Boundary Value Problem of Impulsive Differential Equations[J].Acta mathematica scientia,Series A, 2023, 43(2): 447-457.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14(4): 349-381
doi: 10.1016/0022-1236(73)90051-7 |
[2] |
Bai L, Dai B X. Three solutions for a p-Laplacian boundary value problem with impulsive effects. Appl Math Comput, 2011, 217(24): 9895-9904
doi: 10.1016/j.amc.2011.03.097 |
[3] |
Bai L, Nieto J J. Variational approach to differential matrixs with not instantaneous impulses. Appl Math Lett, 2017, 73: 44-48
doi: 10.1016/j.aml.2017.02.019 |
[4] | Chen H W, He Z M, Li J L. Multiplicity of solutions for impulsive differential matrix on the half-line via variational methods. Bound Value, 2016, 2016: Article number 14 |
[5] |
Fang F, Liu S B. Nontrivial solutions of superlinear $p$-Laplacian matrixs. J Math Anal Appl, 2009, 351(1): 138-146
doi: 10.1016/j.jmaa.2008.09.064 |
[6] |
Jeanjean L. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbb{R} ^{N}$. Proc R Soc Edinb Sect A-Math, 1999, 129(4): 787-809
doi: 10.1017/S0308210500013147 |
[7] |
Liu J, Zhao Z Q. An application of variational methods to second-order impulsive differential matrix with derivative dependence. Electron J Differ Equ, 2014, 2014(62): 1-13
doi: 10.1186/1687-1847-2014-1 |
[8] | 刘健, 赵增勤. Cerami 条件下脉冲边值问题古典解的存在性. 数学学报, 2016, 59(5): 609-622 |
Liu J, Zhao Z Q. Existence of classical solutions to impulsive boundary value problems under Cerami condition. Acta Math Sinica (Chin Ser), 2016, 59(5): 609-622 | |
[9] | 刘健, 赵增勤, 于文广. 具非自治微小扰动的脉冲方程三个古典解的存在性. 数学学报, 2019, 62(3): 441-448 |
Liu J, Zhao Z Q, Yu W G. The existence of triple classical solutions to impulsive problems with small non-autonomous perturbations. Acta Math Sinica (Chin Ser), 2019, 62(3): 441-448 | |
[10] |
Liu S B. On superlinear problems without the Ambrosetti and Rabinowitz condition. Nonlinear Anal, 2010, 73(3): 788-795
doi: 10.1016/j.na.2010.04.016 |
[11] |
刘轼波, 李树杰. 一类超线性椭圆方程的无穷多解. 数学学报, 2003, 46(4): 625-630
doi: cnki:ISSN:0583-1431.0.2003-04-000 |
Liu S B, Li S J. Infinitely many solutions for superlinear elliptic matrix. Acta Math Sinica (Chin Ser), 2003, 46(4): 625-630
doi: cnki:ISSN:0583-1431.0.2003-04-000 |
|
[12] | Menasria L, Bouali T, Guefaifia R, Biomy M. Existence of weak solutions for $p$-Laplacian problem with impulsive effects. Appl Sci, 2020, 22: 128-145 |
[13] |
Miyagaki O H, Souto M A S. Superlinear problems without Ambrosetti and Rabinowitz growth condition. J Differ Equ, 2008, 245(12): 3628-3638
doi: 10.1016/j.jde.2008.02.035 |
[14] |
Nieto J J. Variational formulation of a damped Dirichlet impulsive problem. Appl Math Lett, 2010, 23(8): 940-942
doi: 10.1016/j.aml.2010.04.015 |
[15] |
Nieto J J, O'Regan D. Variational approach to impulsive differential matrixs. Nonlinear Anal: RWA, 2009, 10(2): 680-690
doi: 10.1016/j.nonrwa.2007.10.022 |
[16] | Qian A X. Existence of infinitely many nodal solutions for a superlinear Neumann boundary value problem. Bound Value Probl, 2005, 2005: Article number 3 |
[17] |
Shi H X, Chen H B, Zhang Q. Infinitely many solutions for a $p$-Laplacian boundary value problem with impulsive effects. J Appl Math Comput, 2014, 46(1): 93-106
doi: 10.1007/s12190-013-0739-0 |
[18] |
Tian Y, Ge W G. Applications of variational methods to boundary-value problem for impulsive differential matrixs. Proc Edinb Math Soc, 2008, 51(2): 509-527
doi: 10.1017/S0013091506001532 |
[19] | Willem M. Minimax Theorems. Boston: Birkhäuser Boston Inc, 1996 |
[20] | Xu J F, Wei Z L, Ding Y Z. Existence of weak solutions for $ p $-Laplacian problem with impulsive effects. Taiwan J Math, 2013, 17(2): 501-515 |
[21] |
Zeng Y H, Xie J L. Three solutions to impulsive differential matrixs involving $p$-Laplacian. Adv Differ Equ, 2015, 2015(1): 1-10
doi: 10.1186/s13662-014-0331-4 |
[22] |
Zhang Z H, Yuan R. An application of variational methods to Dirichlet boundary value problem with impulses. Nonlinear Anal: RWA, 2010, 11(1): 155-162
doi: 10.1016/j.nonrwa.2008.10.044 |
[23] | 赵俊峰. Banach 空间结构理论. 武汉: 武汉大学出版社, 1991 |
Zhao J F. Stucture Theory for Banach Space. Wuhan: Wuhan University Press, 1991 | |
[24] |
Zhou J W, Li Y K. Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects. Nonlinear Anal: TMA, 2009, 71(7/8): 2856-2865
doi: 10.1016/j.na.2009.01.140 |
|