Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (2): 355-376.
Previous Articles Next Articles
An Yanning1,Liu Wenjun1,2,3,*(),Kong Aowen1
Received:
2021-09-29
Revised:
2022-10-17
Online:
2023-04-26
Published:
2023-04-17
Supported by:
CLC Number:
An Yanning, Liu Wenjun, Kong Aowen. Stability of Piezoelectric Beams with Magnetic Effects of Fractional Derivative Type and with/without Thermal Effects[J].Acta mathematica scientia,Series A, 2023, 43(2): 355-376.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Dagdeviren C, Duk Yang B, Su Y, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung and diaphragm. P Natl Acad Sci USA, 2014, 111(5): 1927-1932
doi: 10.1073/pnas.1317233111 |
[2] | Gu G Y, Zhu L M, Su C Y, et al. Modeling and control of piezo-actuated nanopositioning stages: A survey. IEEE T Autom Sci Eng, 2014, 13(1): 313-332 |
[3] |
Cuc A, Giurgiutiu V, Joshi S, Tidwell Z. Structural health monitoring with piezoelectric wafer active sensors for space applications. AIAA J, 2007, 45(12): 2838-2850
doi: 10.2514/1.26141 |
[4] | Erturk A, Inman D J. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust, 2008, 130( 4): 041002 |
[5] | Yang J S. A review of a few topics in piezoelectricity. Appl Mech Rev Nov, 2006, 59(6): 335-345 |
[6] | Banks H T, Smith R C, Wang Y. Smart Material Structures-Modeling, Estimation and Control. Chichester, Wiley, 1996 |
[7] | Dietl J M, Wickenheiser A M, Garcia E. A Timoshenko beam model for cantilevered piezoelectric energy harvesters. Smart Mater Struct, 2010, 19( 5): 055018 |
[8] | Morris K A, Özer A Ö. Strong stabilization of piezoelectric beams with magnetic effects. 52nd IEEE Conference on Decision and Control. IEEE, 2013: 3014-3019 |
[9] |
Morris K A, Özer A Ö. Modeling and stabilizability of voltage-actuated piezoelectric beams with magnetic effects. SIAM J Control Optim, 2014, 52(4): 2371-2398
doi: 10.1137/130918319 |
[10] |
Ramos A J A, Freitas M M, Almeida D S, et al. Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect. Z Angew Math Phys, 2019, 70(2): 1-14
doi: 10.1007/s00033-018-1046-2 |
[11] |
Benaissa A, Benazzouz S. Well-posedness and asymptotic behavior of Timoshenko beam system with dynamic boundary dissipative feedback of fractional derivative type. Z Angew Math Phys, 2017, 68(4): 1-38
doi: 10.1007/s00033-016-0745-9 |
[12] | Benaissa A, Gaouar S. Asymptotic stability for the Lamé system with fractional boundary damping. Comput Math Appl, 2019, 77(5): 1331-1346 |
[13] |
Maryati T, Muñoz Rivera J, Poblete V, Vera O. Asymptotic behavior in a laminated beams due interfacial slip with a boundary dissipation of fractional derivative type. Appl Math Optim, 2021, 84(1): 85-102
doi: 10.1007/s00245-019-09639-1 |
[14] | Akil M, Chitour Y, Ghader M, Wehbe A. Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary. Asymptot Anal, 2020, 119(3-4): 221-280 |
[15] | Maryati T K, Muñoz Rivera J E, Rambaud A, Vera O. Stability of an $N$-component Timoshenko beam with localized Kelvin-Voigt and frictional dissipation. Electron J Differential Equations, 2018, 136: 1-18 |
[16] | Rivera J M, Poblete V, Vera O. Stability for an Klein-Gordon matrix type with a boundary dissipation of fractional derivative type. Asymptot Anal, 2022, 127(3): 249-273 |
[17] | Bouzettouta L, Abdelhak D. Exponential stabilization of the full von Kármán beam by a thermal effect and a frictional damping and distributed delay. J Math Phys, 2019, 60( 4): 041506 |
[18] |
Park J H, Kang J R. Energy decay of solutions for Timoshenko beam with a weak non-linear dissipation. IMA J Appl Math, 2011, 76(2): 340-350
doi: 10.1093/imamat/hxq040 |
[19] |
Belhannache F, Messaoudi S A. On the general stability of a viscoelastic wave matrix with an integral condition. Acta Math Appl Sin Engl Ser, 2020, 36(4): 857-869
doi: 10.1007/s10255-020-0979-3 |
[20] |
Hao J, Rao B. Influence of the hidden regularity on the stability of partially damped systems of wave matrixs. J Math Pures Appl, 2020, 143(9): 257-286
doi: 10.1016/j.matpur.2020.09.004 |
[21] |
Keddi A A, Apalara T A, Messaoudi S A. Exponential and polynomial decay in a thermoelastic-Bresse system with second sound. Appl Math Optim, 2018, 77(2): 315-341
doi: 10.1007/s00245-016-9376-y |
[22] |
Liu W, Kong X, Li G. Lack of exponential decay for a laminated beam with structural damping and second sound. Ann Polon Math, 2020, 124(3): 281-289
doi: 10.4064/ap181224-17-9 |
[23] |
Alves M S, Monteiro R N. Stabilization for partially dissipative laminated beams with non-constant coefficients. Z Angew Math Phys, 2020, 71(5): 1-15
doi: 10.1007/s00033-019-1224-x |
[24] | Mustafa M I. Optimal energy decay result for nonlinear abstract viscoelastic dissipative systems. Z Angew Math Phys, 2021, 72(2): Paper No. 67 |
[25] |
Cardozo C L, Jorge Silva M A, Ma T F, Muñoz Rivera J E. Stability of Timoshenko systems with thermal coupling on the bending moment. Math Nachr, 2019, 292(12): 2537-2555
doi: 10.1002/mana.201800546 |
[26] |
Feng B, Yang X G. Long-time dynamics for a nonlinear Timoshenko system with delay. Appl Anal, 2017, 96(4): 606-625
doi: 10.1080/00036811.2016.1148139 |
[27] |
Liu W, Zhao W. Stabilization of a thermoelastic laminated beam with past history. Appl Math Optim, 2019, 80(1): 103-133
doi: 10.1007/s00245-017-9460-y |
[28] | Liu W, Chen D, Chen Z. Long-time behavior for a thermoelastic microbeam problem with time delay and the Coleman-Gurtin thermal law. Acta Math Sci, 2021, 41B(2): 609-632 |
[29] | Jiang J. Boundedness and exponential stabilization in a parabolic-elliptic Keller-Segel model with signal-dependent motilities for local sensing chemotaxis. Acta Math Sci, 2022, 42B(3): 825-846 |
[30] | 欧阳成, 汪维刚, 莫嘉琪. 分数阶广义扰动热波方程. 数学物理学报, 2020, 40A(2): 452-459 |
Ouyang C, Wang W G, Mo J Q. The fractional generalized disturbed thermal wave matrix. Acta Math Sci, 2020, 40A(2): 452-459 | |
[31] |
Mbodje B. Wave energy decay under fractional derivative controls. IMA J Math Control Inform, 2006, 23(2): 237-257
doi: 10.1093/imamci/dni056 |
[32] | Engel K J, Nagel R. One-Parameter Semigroups for Linear Evolution Equations. New York: Springer, 2000 |
[33] |
Borichev A, Tomilov Y. Optimal polynomial decay of functions and operator semigroups. Math Ann, 2010, 347(2): 455-478
doi: 10.1007/s00208-009-0439-0 |
[1] | Nan Deng,Meiqiang Feng. Positive Doubly Periodic Solutions To Telegraph Equations: Existence, Uniqueness, Multiplicity and Asymptotic Behavior [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1360-1380. |
[2] | Xiangyu Xiao,Zhilin Pu. The Global Attractors of Cahn-Hilliard-Brinkman System [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1027-1040. |
[3] | Tianling Gao,Li Xia,Mingjun Zhou,Yuanyuan Zhang. The Asymptotic Behavior of Total Variation Flow with the Non-Constant Data [J]. Acta mathematica scientia,Series A, 2022, 42(1): 157-164. |
[4] | Lihong Zhang,Zedong Yang,Guotao Wang,Dumitru Baleanu. Existence and Asymptotic Behavior of Solutions of a Class of k-Hessian Equation [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1357-1371. |
[5] | Zaiyong Feng,Ning Chen,Yongpeng Tai,Zhengrong Xiang. On the Observer Design for Fractional Singular Linear Systems [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1529-1544. |
[6] | Jinguo Zhang,Dengyun Yang. Existence and Asymptotic Behavior of Solution for a Degenerate Elliptic Equation Involving Grushin-Type Operator and Critical Sobolev-Hardy Exponents [J]. Acta mathematica scientia,Series A, 2021, 41(4): 997-1012. |
[7] | Xuanxuan Xi,Mimi Hou,Xianfeng Zhou. Invariance Sets and Well-Posedness for the Weak Solution of Non-Autonomous Caputo Fractional Evolution Equation [J]. Acta mathematica scientia,Series A, 2021, 41(1): 149-165. |
[8] | Dexiang Ma,Abdullah Özbekler. Generalized Lyapunov Inequalities for a Higher-Order Sequential Fractional Differential Equation with Half-Linear Terms [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1537-1551. |
[9] | Jingyun Lv,Xiaoyuan Yang. Approximate Controllability of Hilfer Fractional Integro-Differential Equations Using Sequence Method [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1282-1294. |
[10] | Yuji Liu. Solvability of BVPs for Impulsive Fractional Langevin Type Equations Involving Three Riemann-Liouville Fractional Derivatives [J]. Acta mathematica scientia,Series A, 2020, 40(1): 103-131. |
[11] | Pengcheng Tang,Xuejun Zhang,Ruixin Lv. Equivalent Characterization of Several Quantities on Holomorphic Function Spaces [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1291-1299. |
[12] | Jie Wu,Hongxia Lin. The Global Solution and Asymptotic Behavior of Parabolic-Parabolic Keller-Segel Type Model [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1102-1114. |
[13] | Wenbing Sun,Qiong Liu. New Simpson Type Inequalities for Generalized Convex Functions on Fractal Space and Its Applications [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1058-1066. |
[14] | Zhang Mingshu, Zhu Zheqi, Zhao Caidi. Determining Modes and Determining Nodes to the Fluid Flow of Ladyzhenskaya Model [J]. Acta mathematica scientia,Series A, 2018, 38(1): 71-82. |
[15] | Wang Shenghua, Cheng Guofei. The Asymptotic Behavior of the Solution in Structured Bacterial Population Model [J]. Acta mathematica scientia,Series A, 2018, 38(1): 156-167. |
|