Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (2): 399-420.
Previous Articles Next Articles
Received:
2021-11-11
Revised:
2022-09-13
Online:
2023-04-26
Published:
2023-04-17
Supported by:
CLC Number:
Li Min, Pu Xueke. Long-Wavelength Limit for the Two-Fluid Euler-Poisson Equation[J].Acta mathematica scientia,Series A, 2023, 43(2): 399-420.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Bae J, Kwon B. Small amplitude limit of solitary waves for the Euler-Poisson system. J Differential Equations, 2019, 266(6): 3450-3478
doi: 10.1016/j.jde.2018.09.006 |
[2] | Gardner C S, Morikawa O K. Similarity in the asymptotic behavior of collision-free hydromagnetic waves and water waves, Rep NYO-9082. Courant Institute, 1960 |
[3] |
Grenier E. Pseudo-differential energy estimates of singular perturbations. Comm Pure Appl Math, 1997, 50(9): 0821-0865
doi: 10.1002/(ISSN)1097-0312 |
[4] |
Grenier E, Guo Y, Pausader B, Suzuki M. Derivation of the ion matrix. Quart Appl Math, 2020, 78(2): 305-332
doi: 10.1090/qam/2020-78-02 |
[5] |
Guo Y, Pu X. KdV limit of the Euler-Poisson system. Arch Ration Mech Anal, 2014, 211(2): 673-710
doi: 10.1007/s00205-013-0683-z |
[6] |
Haas F, Garcia L, Goedert J, Manfredi G. Quantum ion-acoustic waves. Phys Plasmas, 2003, 10(10): 3858-3866
doi: 10.1063/1.1609446 |
[7] |
Han-Kwan D. From Vlasov-Poisson to Korteweg-de Vries and Zakharov-Kuznetsov. Commun Math Phys, 2013, 324(3): 961-993
doi: 10.1007/s00220-013-1825-8 |
[8] |
Kakutani T, Ono H, Taniuti T. Reductive perturbation method in nonlinear wave propagation II, Application to hydromagnetic waves in cold plasma. J Phys Soc Japan, 1968, 24(5): 1159-1166
doi: 10.1143/JPSJ.24.1159 |
[9] | Lannes D, Linares F, Saut J. The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov matrix, Studies in phase space analysis with applications to PDEs. Progr Nonlinear Differential Equations Appl, 2013, 84: 181-213 |
[10] |
Liu H, Pu X. Long wavelength limit for the quantum Euler-Poisson matrix. SIAM J Math Anal, 2016, 48(4): 2345-2381
doi: 10.1137/15M1046587 |
[11] | Markowich P, Ringhofer C, Schmeiser C. Semiconductor Equations. New York: Springer-Verlag, 1990 |
[12] |
Miura R. The Korteweg-de Vries matrix: A survey of results. SIAM Rev, 1976, 18(3): 412-459
doi: 10.1137/1018076 |
[13] | Nicholson D. Introduction to Plasma Theory. New York: Wiley, 1983 |
[14] |
Pu X. Dispersive limit of the Euler-Poisson system in higher dimensions. SIAM J Math Anal, 2013, 45(2): 834-878
doi: 10.1137/120875648 |
[15] | Pu X, Li M. KdV limit of the hydromagnetic waves in cold plasma. Z Angew Mathe Phys, 2019, 70( 1): 32 |
[16] | Sitnko A, Malnev V. Plasma Physics Theory. London: Chapman & Hall, 1995 |
[17] |
Su C, Gardner C. Korteweg-de Vries matrix and generalizations III: derivation of the Korteweg-de Vries matrix and Burgers matrix. J Mathematical Phys, 1969, 10: 536-539
doi: 10.1063/1.1664873 |
[18] |
Washimi H, Taniuti T. Propagation of ion-acoustic waves of small amplitude. Phys Rev Lett, 1966, 17(9): 996-998
doi: 10.1103/PhysRevLett.17.996 |
[1] | Kang Xiaodong, Fan Hongxia. Approximate Controllability for a Class of Second-Order Evolution Equations with Instantaneous Impulse [J]. Acta mathematica scientia,Series A, 2023, 43(2): 421-432. |
[2] | Zeng Biao. Optimal Control for a Class of Nonlinear Evolutionary Equations with Weakly Continuous Operators [J]. Acta mathematica scientia,Series A, 2023, 43(2): 515-530. |
[3] | Chen Xuejiao, Li Yuanfei, Hou Chunjuan. Phragmén-Lindelöf Type Results for the Solutions of Forchheimer Equations on a Semi-Infinite Cylinder [J]. Acta mathematica scientia,Series A, 2023, 43(2): 505-514. |
[4] | Baoying Du,Jinxing Liu. Global Regularity for the Incompressible 3D Hall-Magnetohydrodynamics with Partial Dissipation [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1754-1767. |
[5] | Xiao Su,Shubin Wang. The Cauchy Problem for the Forth Order p-Generalized Benney-Luke Equation [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1744-1753. |
[6] | Xinhai He,Mei Liu,Han Yang. Existence and Uniqueness of Global Solutions for a Class of Semilinear Time Fractional Diffusion-Wave Equations [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1705-1718. |
[7] | Chen Xingfa, Zhong Penghong. The Ill-Posedness of the Solution for the General Power Derivative Schrödinger Equation in Hs [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1768-1781. |
[8] | Heqian Lu,Zhengce Zhang. The Critical Exponents for the Evolution p-Laplacian Equation with Nonlinear Gradient Terms [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1381-1397. |
[9] | Zhiqiang Shao. Concentration and Cavitation in the Pressureless Limit of Euler Equations of Compressible Fluid Flow with Damping and Friction [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1150-1172. |
[10] | Zhen Qiu,Guangwu Wang. Blow-Up of the Smooth Solutions to the Quantum Navier-Stokes-Landau-Lifshitz Equations [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1074-1088. |
[11] | Kexin Luo,Shaoyong Lai. Global Weak Solutions to a High-Order Camass-Holm Type Equation [J]. Acta mathematica scientia,Series A, 2022, 42(2): 427-441. |
[12] | Cheng Ouyang,Jiaqi Mo. The Solitary Wave Solution to a Class of Nonlinear Dynamic System [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1830-1837. |
[13] | Xiaojing Cai,Yanjie Zhou. Asymptotic Behavior for the Damped Boussinesq [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1415-1427. |
[14] | Jinguo Zhang,Dengyun Yang. Existence and Asymptotic Behavior of Solution for a Degenerate Elliptic Equation Involving Grushin-Type Operator and Critical Sobolev-Hardy Exponents [J]. Acta mathematica scientia,Series A, 2021, 41(4): 997-1012. |
[15] |
Minfeng Chen,Zongsheng Gao,Zhibo Huang.
Meromorphic Solutions of Finite Order to the Equation |
|