Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (2): 531-548.
Previous Articles Next Articles
Li Yangrong(),Wang Fengling(),Yang Shuang()
Received:
2021-08-02
Revised:
2022-09-28
Online:
2023-04-26
Published:
2023-04-17
Supported by:
CLC Number:
Li Yangrong, Wang Fengling, Yang Shuang. Backward
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Kloeden P E, Lorenz T. Mean-square random dynamical systems. J Differential Equations, 2012, 253: 1422-1438
doi: 10.1016/j.jde.2012.05.016 |
[2] |
Wang B X. Weak pullback attractors for mean random dynamical systems in Bochner spaces. J Dynam Differential Equations, 2019, 31: 2177-2204
doi: 10.1007/s10884-018-9696-5 |
[3] |
Wang R H, Wang B X. Random dynamics of $p$-Laplacian lattice systems driven by infinite-dimensional nonlinear noise. Stoch Proc Appl, 2020, 130: 7431-7462
doi: 10.1016/j.spa.2020.08.002 |
[4] | Wang R H, Wang B X. Random dynamics of lattice wave matrixs driven by infinite-dimensional nonlinear noise. Discrete Cont Dyn Syst Ser B, 2020, 25: 2461-2493 |
[5] | Wang X H, Kloeden P E, Han X Y. Stochastic dynamics of a neural field lattice model with state dependent nonlinear noise. Nonl Differ Equ Appl, 2021, 28: 43 |
[6] | Yang S, Li Y R. Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise. J Math Phys, 2021, 25: 051510 |
[7] |
Wang B X. Dynamics of fractional stochastic reaction-diffusion matrixs on unbounded domains driven by nonlinear noise. J Differential Equations, 2019, 268: 1-59
doi: 10.1016/j.jde.2019.08.007 |
[8] |
Wang B X. Dynamics of stochastic reaction diffusion lattice systems driven by nonlinear noise. J Math Anal Appl, 2019, 477: 104-132
doi: 10.1016/j.jmaa.2019.04.015 |
[9] |
Wang B X. Weak pullback attractors for stochastic Navier-Stokes matrixs with nonlinear diffusion terms. Proc Amer Math Soc, 2019, 147: 1627-1638
doi: 10.1090/proc/2019-147-04 |
[10] | Prévôt C, Röckner M. A concise Course on Stochastic Partial Differential Equations. Berlin: Springer, 2007 |
[11] |
Kloeden P E, Simsen J. Attractors of asymptotically autonomous quasi-linear parabolic matrix with spatially variable exponents. J Math Anal Appl, 2015, 425: 911-918
doi: 10.1016/j.jmaa.2014.12.069 |
[12] |
Kloeden P E, Simsen J, Simsen M S. Asymptotically autonomous multivalued Cauchy problems with spatially variable exponents. J Math Anal Appl, 2017, 445: 513-531
doi: 10.1016/j.jmaa.2016.08.004 |
[13] | Li Y R, She L B, Yin J Y. Equi-attraction and backward compactness of pullback attractors for point-dissipative Ginzburg-Landau matrixs. Acta Math Scientia, 2018, 40B: 591-609 |
[14] |
Li Y R, She L B, Wang R H. Asymptotically autonomous dynamics for parabolic matrix. J Math Anal Appl, 2018, 459: 1106-1123
doi: 10.1016/j.jmaa.2017.11.033 |
[15] |
She L B, Wang R H. Regularity, forward-compactness and measurability of attractors for non-autonomous stochastic lattice systems. J Math Anal Appl, 2019, 479: 2007-2031
doi: 10.1016/j.jmaa.2019.07.038 |
[16] | Wang R H, Li Y R. Asymptotic autonomy of kernel sections for Newton-Boussinesq matrixs on unbounded zonary domains. Dynmics of PDE, 2019, 16: 295-316 |
[17] | Cui H Y, Kloeden P E, Wu F K. Pathwise upper semi-continuity of random pullback attractors along the time axis. Physica D, 2018, 16: 21-34 |
[18] | Li Y R, Yang S. Backward compact and periodic random attractors for non-autonomous Sine-Gordon matrixs with multiplicative noise. Commun Pure Appl Anal, 2019, 18: 1155-1175 |
[19] | Wang S L, Li Y R. Longtime robustness of pullback random attractors for stochastic magneto-hydrodynamics matrixs. Physica D, 2018, 382: 46-57 |
[20] |
Roh J. Dynamics of the g-Navier-Stokes matrixs. J Differential Equations, 2005, 211: 452-484
doi: 10.1016/j.jde.2004.08.016 |
[21] |
Gao X C, Gao H J. Existence and uniqueness of weak solutions to stochastic 3D Navier-Stokes matrixs with delays. Appl Math Letters, 2019, 95: 158-164
doi: 10.1016/j.aml.2019.03.037 |
[22] | Raugel G, Sell G R. Navier-stokes matrixs on thin 3D domains. I. Global attractors and global regularity of solutions. J Amer Math Soc, 1993, 6: 503-568 |
[23] | 徐明月, 赵才地, Caraballo T. 三维不可压Navier-Stokes方程组轨道统计解的退化正则性. 数学物理学报, 2021, 41A(2): 336-344 |
Xu M Y, Zhou C D, Caraballo T. Degenerate regularity of trajectory statistical solutions for the 3D incompressible Navier-Stokes matrixs. Acta Math Sci, 2021, 41A(2):336-344 | |
[24] |
Feng X L, You B. Random attractors for the two-dimensional stochastic g-Navier-Stokes matrixs. Stochastics, 2020, 92: 613-626
doi: 10.1080/17442508.2019.1642340 |
[25] | Li F Z, Li Y R. Asymptotic behavior of stochastic $g$-Navier-Stokes matrixs on a sequence of expanding domains. J Math Phys, 2019, 60: 061505 |
[26] |
Li Y R, Yang S. Hausdorff sub-norm spaces and continuity of random attractors for bi-stochastic $g$-Navier-Stokes matrixs with respect to tempered forces. J Dynam Differential Equations, 2023, 35(1): 543-574
doi: 10.1007/s10884-021-10026-0 |
[27] |
Brzeźniak Z, Li Y H. Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes matrixs on some unbounded domains. Trans Amer Math Soc, 2006, 358: 5587-5629
doi: 10.1090/S0002-9947-06-03923-7 |
[28] |
Brzeźniak Z, Goldys B, Le Gia Q T. Random attractors for the stochastic Navier-Stokes matrixs on the 2D Unit Sphere. J Math Fluid Mech, 2018, 20: 227-253
doi: 10.1007/s00021-017-0351-4 |
[29] |
Caraballo T, Łukaszewiczd G, Real J. Pullback attractors for non-autonomous 2D-Navier-Stokes matrixs in some unbounded domains. C R Math Acad Sci Paris, 2006, 342: 263-268
doi: 10.1016/j.crma.2005.12.015 |
[30] |
Chueshov I, Millet A. Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl Math Optim, 2010, 61: 379-420
doi: 10.1007/s00245-009-9091-z |
[31] | Guo B L, Guo C X, Pu X K. Random attractors for a stochastic hydrodynamical matrix in heisenberg paramagent. Acta Math Scientia, 2011, 31B: 529-540 |
[32] | Zhao C D, Li Y S, Zhou S F. Random attractor for a two-dimensional incompressible non-Newtonian fluid with multiplicative noise. Acta Math Scientia, 2011, 31B: 567-575 |
[33] |
Caraballo T, Han X Y, Sehmalfuss B, Valero J. Random attractors for stochastic lattice dynamical systems with infinite multiplicative white noise. Nonlinear Anal, 2016, 130: 255-278
doi: 10.1016/j.na.2015.09.025 |
[34] | Gess B. Random attractors for stochastic porous media matrixs perturbed by space-time linear multiplicative noise. Annals Probab, 2014, 42: 818-864 |
[35] | 黎定仕, 范英飞. 随机非局部扩散方程的随机吸引子的存在性. 数学物理学报, 2017, 37A(1): 158-172 |
Li D S, Fan Y F. Random attractors for the stochastic nonclassical diffusion matrix on unbounded domains. Acta Math Sci, 2017, 37A(1): 158-172 | |
[36] |
Li Y R, Gu A H, Li J. Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian matrixs. J Differential Equations, 2015, 258: 504-534
doi: 10.1016/j.jde.2014.09.021 |
[37] |
Li Y R, Yin J Y. A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo matrixs. Discrete Contin Dyn Syst Ser B, 2016, 21: 1203-1223
doi: 10.3934/dcdsb |
[38] |
Lu K N, Wang B X. Wong-Zakai approximations and long term behavior of stochastic partial differential matrixs. J Dynam Differential Equations, 2019, 31: 1341-1371
doi: 10.1007/s10884-017-9626-y |
[39] | Zhao W Q. Regularity of random attractors for a stochastic degenerate parabolic matrixs driven by multiplicative noise. Acta Math Scientia, 2016, 36B: 409-427 |
[40] | Zhao W Q, Zhang Y J. Upper semi-continuity of random attractors for a non-autonomous dynamical system with a weak convergence condition. Acta Math Scientia, 2020, 40B: 921-933 |
[41] |
Zhou S F, Wang Z J. Finite fractal dimensions of random attractors for stochastic FitzHugh-Nagumo system with multiplicative white noise. J Math Anal Appl, 2016, 441: 648-667
doi: 10.1016/j.jmaa.2016.04.038 |
[42] | 赵敏, 周盛凡. 带可加噪声的非自治随机Boussinesq格点方程的随机吸引子. 数学物理学报, 2018, 38A(5): 924-940 |
Zhao M, Zhou S F. Random attractor for non-autonomous stochastic Boussinesq lattice matrixs with additive white noises. Acta Math Sci, 2018, 38A(5): 924-940 |
[1] | Cai Gang. The Well-Posedness of Degenerate Differential Equations with Finite Delay in Banach Spaces [J]. Acta mathematica scientia,Series A, 2018, 38(2): 264-275. |
[2] | DONG Ge, WEI Wen-Zhan. Noncreasy Orlicz-Bochner Function Spaces with Luxemburg Norm [J]. Acta mathematica scientia,Series A, 2009, 29(2): 416-422. |
|