Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (2): 515-530.
Previous Articles Next Articles
Received:
2021-08-30
Revised:
2022-10-18
Online:
2023-04-26
Published:
2023-04-17
Supported by:
CLC Number:
Zeng Biao. Optimal Control for a Class of Nonlinear Evolutionary Equations with Weakly Continuous Operators[J].Acta mathematica scientia,Series A, 2023, 43(2): 515-530.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Ahmed N U. Existence of optimal controls for a class of systems governed by differential inclusions in Banach spaces. J Optim Theory Appl, 1986, 50: 213-237
doi: 10.1007/BF00939270 |
[2] | Ahmed N U. Existence of optimal relaxed controls for differential inclusions on Banach space//Lakshmi- kantham. Nonlinear Analysis and Applications. New York: CRC Press, 1987: 39-49 |
[3] | Ahmed N U. Properties of the relaxed trajectories for a class of nonlinear evolution matrixs on a Banach space. SIAM Journal on Control and Optimization, 1983, t2: 953-968 |
[4] | Papageorgiou N S. Existence of optimal controls for nonlinear systems in Banach spaces. J Optim Theory Appl, 1987, 53(3): 1581-1600 |
[5] |
Papageorgiou N S. Properties of the relaxed trajectories of evolution matrixs and optimal control. SIAM J Contr Optim, 1989, 27: 267-288
doi: 10.1137/0327014 |
[6] |
Papageorgiou N S. Relaxation and existenee of optimal controls for systems governed by evolution inclusions in separable Banach spaces. J Optim Theory Appl, 1990, 64: 573-594
doi: 10.1007/BF00939425 |
[7] | Cesari L. Existence of Solutions and Existence of Optimal Solutions. Mathematical Theories of Optimization, 1983, 979: 88-107 |
[8] | Cesari L. Optimization:Theory and Applications. New York: Springer-Verlag, 1983 |
[9] | Ahmed N U, Teo K L. Optimal Control of Distributed-Parameter Systems. New York: North-Holland, 1981 |
[10] | Lions J L. Optimal Control of Systems Governed by Partial Differential Equations. New York: Springer-Verlag, 1971 |
[11] |
Zeng B. Feedback control systems governed by evolution matrixs. Optimization, 2019, 68: 1223-1243
doi: 10.1080/02331934.2019.1578358 |
[12] |
Zeng B, Liu Z H. Existence results for impulsive feedback control systems. Nonlinear Analysis: Hybrid Systems, 2019, 33: 1-16
doi: 10.1016/j.nahs.2019.01.008 |
[13] |
Aizicovici S, Pavel N H. Anti-periodic solutions to a class of nonlinear differential matrixs in Hilbert space. J Functional Analysis, 1991, 99: 387-408
doi: 10.1016/0022-1236(91)90046-8 |
[14] | Barbu V. Nonlinear Semigroup and Differential Equations in Banach Spaces. Leyden: Noordhoff, 1976 |
[15] |
Carstensen C, Gwinner J. A theory of discretization for nonlinear evolution inequalities applied to parabolic Signorini problems. Ann Mat Pura Appl, 1999, 177: 363-394
doi: 10.1007/BF02505918 |
[16] | Denkowski Z, Migórski S, Papageorgiou N S. An Introduction to Nonlinear Analysis:Theory. New York: Kluwer Academic/Plenum Publishers, 2003 |
[17] | Li X J, Yong J M. Optimal Control Theory for Infinite Dimensional Systems. Boster: Birkhäuser, 1995 |
[18] |
Guo B Z, Xu Y S, Yang D H. Optimal actuator location of minimum norm controls for heat matrix with general controlled domain. J Differential Equations, 2016, 261: 3588-3614
doi: 10.1016/j.jde.2016.05.037 |
[19] |
Reyes J C D L, Dhamo V. Error estimates for optimal control problems of a class of quasilinear matrixs arising in variable viscosity fluid flow. Numer Math, 2016, 132: 691-720
doi: 10.1007/s00211-015-0737-2 |
[20] |
Sattayatham P. Strongly nonlinear impulsive evolution matrixs and optimal control. Nonlinear Analysis, 2004, 57: 1005-1020
doi: 10.1016/j.na.2004.03.025 |
[21] | Tanabe H. Equations of Evolution. London: Pitman, 1979 |
[22] |
Xiang X L. Optimal controls for a class of strongly nonlinear evolution matrixs with constraint. Nonlinear Analysis, 2001, 47: 57-66
doi: 10.1016/S0362-546X(01)00156-0 |
[23] |
Yamazaki N. Convergence and optimal control problems of nonlinear evolution matrixs governed by time-dependent operator. Nonlinear Analysis, 2009, 70: 4316-4331
doi: 10.1016/j.na.2008.09.015 |
[24] |
Francŭ J. Weakly continuous operators, applications to differential matrixs. Application of Mathematics, 1984, 39(1): 45-56
doi: 10.21136/AM |
[25] | Roubiček T. Nonlinear Partial Differential Equations with Applications. Berlin: Birkhäuser, 2005 |
[26] | Zeng B, Migórski S. Evolutionary subgradient inclusions with nonlinear weakly continuous operators and applications. Comput. Math. Appl., 2018, 75: 89-104 |
[27] | Zeng B. Feedback control for nonlinear evolutionary matrixs with applications. Nonlinear Analysis: Real World Applications, 2022, 66: 103535. |
[28] |
Shen S, Liu F, Chen J, et al. Numerical techniques for the variable order time fractional diffusion matrix. Appl Math Comput, 2012, 218: 10861-10870
doi: 10.1016/j.amc.2012.04.047 |
[29] | Kačur J. Method of Rothe in Evolution Equations. Teubner-Texte zur Mathematik 80. Leipzig: B G Teubner, 1985 |
[30] |
Balder E J. Necessary and sufficient conditions for $L^1$-strong weak lower semicontinuity of integral functionals. Nonlinear Anal, 1987, 11: 1399-1404
doi: 10.1016/0362-546X(87)90092-7 |
[31] |
Anh C T, Nguyet T M. Optimal control of the instationary three dimensional Navier-Stokes-Voigt matrixs. Numerical Functional Analysis and Optimization, 2016, 37(4): 415-439
doi: 10.1080/01630563.2015.1136891 |
[32] |
Anh C T, Trang P T. Pull-back attractors for three-dimensional Navier-Stokes-Voigt matrixs in some unbounded domains. Proc Royal Soc Edinburgh Sect A, 2013, 143: 223-251
doi: 10.1017/S0308210511001491 |
[33] |
Celebi A O, Kalantarov V K, Polat M. Global attractors for 2D Navier-Stokes-Voight matrixs in an unbounded domain. Appl Anal, 2009, 88: 381-392
doi: 10.1080/00036810902766682 |
[34] |
García-Luengo J, Marín-Rubio P, Real J. Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt matrixs. Nonlinearity, 2012, 25: 905-930
doi: 10.1088/0951-7715/25/4/905 |
[35] |
Kalantarov V K, Titi E S. Global attractor and determining modes for the 3D Navier-Stokes-Voight matrixs. Chin Ann Math Ser B, 2009, 30: 697-714
doi: 10.1007/s11401-009-0205-3 |
[36] |
Kalantarov V K, Titi E S. Gevrey regularity for the attractor of the 3D Navier-Stokes-Voight matrixs. J Nonlinear Sci, 2009, 19: 133-152
doi: 10.1007/s00332-008-9029-7 |
[37] | Yue G, Zhong C K. Attractors for autonomous and nonautonomous 3D Navier-Stokes-Voight matrixs. Discrete Cont Dyna Syst Ser B, 2011, 16: 985-1002 |
[38] | Robinson J C. Infinite-Dimensional Dynamical Systems. Cambridge: Cambridge University Press, 2001 |
[39] | Temam R. Navier-Stokes Equations: Theory and Numerical Analysis, 2nd edition. North-Holland: Amsterdam, 1979 |
[40] | Contantin P, Foias C. Navier-Stokes Equations, Chicago Lectures in Mathematics. Chicago: University of Chicago Press, 1988 |
[41] |
Dudek S, Kalita P, Migórski S. Stationary flow of non-Newtonian fluid with nonmonotone frictional boundary conditions. Z Angew Math Phys, 2015, 66: 2625-2646
doi: 10.1007/s00033-015-0545-7 |
[1] | Xiaoyong Cui,Can Zhang. Turnpike Properties of a Class of Optimal Control Problems with Exponential Weights [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1256-1264. |
[2] | Zerong He,Yimeng Dou,Mengjie Han. Optimal Boundary Control for a Hierarchical Size-Structured Population Model with Delay [J]. Acta mathematica scientia,Series A, 2022, 42(3): 867-880. |
[3] | Zerong He,Nan Zhou. Optimal Harvesting in a Competing System of Hierarchical Age-Structured Populations [J]. Acta mathematica scientia,Series A, 2022, 42(1): 228-244. |
[4] | Zerong He,Mengjie Han. Optimal Control of Initial Distributions in a Hierarchical Size-Structured Population System with Delay [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1181-1191. |
[5] |
Qionglin Liu,Yinghui Tang.
Analysis of |
[6] | Le Luo,Yinghui Tang. System Capacity Optimization Design and Optimal Control Policy (N*, D*) for M/G/1 Queue with p-Entering Discipline and Min(N, D, V)-Policy [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1228-1246. |
[7] | Maoning Tang,Qingxin Meng. Linear-Quadratic Optimal Control Problems for Mean-Field Backward Stochastic Differential Equations with Jumps [J]. Acta mathematica scientia,Series A, 2019, 39(3): 620-637. |
[8] | Quyu Pan,Yinghui Tang. Analysis of M/G/1 Repairable Queueing System and Optimal Control Policy with a Replaceable Repair Facility Under Delay Min(N, D)-Policy [J]. Acta mathematica scientia,Series A, 2018, 38(5): 1014-1031. |
[9] | Zhang Chunguo, Liu Yubiao, Liu Weiwei. Boundary Optimal Control for the Timoshenko Beam [J]. Acta mathematica scientia,Series A, 2018, 38(3): 454-466. |
[10] | Gao Lijun, Tang Yinghui. M/G/1 Repairable Queueing System and Optimal Control Policy with Min(N,D)-Policy [J]. Acta mathematica scientia,Series A, 2017, 37(2): 352-365. |
[11] | He Zerong, Yang Lizhi. A Weighted Population Model with Size-Structure: Stability and Optimal Harvesting [J]. Acta mathematica scientia,Series A, 2016, 36(3): 584-600. |
[12] | ZHOU Shu-Qing, HU Zhen-Hua, PENG Dong-Yun. Global Regularity for Very Weak Solutions to Obstacle Promlems Corresponding to a Class of A-Harmonic Equations [J]. Acta mathematica scientia,Series A, 2014, 34(1): 27-38. |
[13] | WU Li-Meng, NI Ming-Kang, LIU Hai-Bo. Internal Transition Layer Solution of Singularly Perturbed Optimal Control Problem [J]. Acta mathematica scientia,Series A, 2013, 33(2): 206-215. |
[14] | LIU Yan, HE Ze-Rong. Optimal Harvesting of a Size-structured Predator-prey Model [J]. Acta mathematica scientia,Series A, 2012, 32(1): 90-102. |
[15] | FU Hong-Fei, RUI Hong-Xing. Error Estimates for the Finite Element Approximation of Nonlinear Parabolic Optimal Control Problems [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1542-1554. |
|