Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (2): 604-624.
Previous Articles Next Articles
Liu Lili1,Wang Honggang1,Li Yazhi2,*()
Received:
2022-01-29
Revised:
2022-10-17
Online:
2023-04-26
Published:
2023-04-17
Supported by:
CLC Number:
Liu Lili, Wang Honggang, Li Yazhi. A Generalized HBV Diffusive Model with DNA-Containing Capsids and Cell-Cell Infection[J].Acta mathematica scientia,Series A, 2023, 43(2): 604-624.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Li M L, Zu J. The review of differential matrix models of HBV infection dynamics. J Virol Methods, 2019, 266: 103-113
doi: 10.1016/j.jviromet.2019.01.014 |
[2] |
Nowak M A, Bonhoeffer S, Hill A M, et al. Viral dynamics in Hepatitis B virus infection. P Natl Acad Sci USA, 1996, 93(9): 4398-4402
doi: 10.1073/pnas.93.9.4398 |
[3] | Min L, Su Y M, Kuang Y. Mathematical analysis of a basic virus infection model with application to HBV infection. Rocky Mountain J Math, 2008, 38(5): 1573-1585 |
[4] | 李喜玲, 高飞, 李文琴. 具有免疫时滞的分数阶 HBV 感染模型稳定性分析. 数学物理学报, 2021, 41A(2): 562-576 |
Li X L, Gao F, Li W Q. Stability analysis of fractional-order hepatitis B virus infection model with immune delay. Acta Math Sci, 2021, 41A(2): 562-576 | |
[5] |
Wang K F, Wang W D. Propagation of HBV with spatial dependence. Math Biosci, 2007, 210(1): 78-95
pmid: 17592736 |
[6] |
Wang K F, Wang W D, Song S P. Dynamics of an HBV model with diffusion and delay. J Theor Biol, 2008, 253(1): 36-44
pmid: 18155252 |
[7] |
Gan Q T, Xu R, Yang P H, et al. Travelling waves of a hepatitis B virus infection model with spatial diffusion and time delay. IMA J Appl Math, 2010, 75(3): 392-417
doi: 10.1093/imamat/hxq009 |
[8] |
Xu R, Ma Z N. An HBV model with diffusion and time delay. J Theor Biol, 2009, 257(3): 499-509
doi: 10.1016/j.jtbi.2009.01.001 pmid: 19174169 |
[9] |
Zhang Y Y, Xu Z T. Dynamics of a diffusive HBV model with delayed Beddington-Deangelis response. Nonlinear Anal RWA, 2014, 15: 118-139
doi: 10.1016/j.nonrwa.2013.06.005 |
[10] | 杨瑜, 周金玲. 一类具有扩散和Beddington-DeAngelis反应函数的病毒模型的全局稳定性. 高校应用数学学报, 2016, 31(2): 161-166 |
Yang Y, Zhou J L. Global stability of a diffusive virus dynamics model with Beddington-DeAngelis incidence function. Appl Math Journal of Chinese Universities, 2016, 31(2): 161-166 | |
[11] | Hattaf K, Yousfi N. A generalized HBV model with diffusion and two delays. Comput Math Appl, 2015, 69(1): 31-40 |
[12] |
Guidotti L G, Rochford R, Chung J, et al. Viral clearance without destruction of infected cells during acute HBV infection. Science, 1999, 284: 825-829
doi: 10.1126/science.284.5415.825 pmid: 10221919 |
[13] | Goyal A, Murray J M. Modelling the impact of cell-to-cell transmission in hepatitis B virus. Plos ONE, 2016, 11( 8): e0161978 |
[14] | 杨翠兰, 刘贤宁. 一个具有细胞-细胞传播和时滞的病毒动力学模型. 西南大学学报(自然科学版), 2015, 37(5): 97-101 |
Yang C L, Liu X N. A virus dynamical model with cell-to-cell viral transmission and delay. Journal of Southwest University of China (Natural Science Edition), 2015, 37(5): 97-101 | |
[15] | Sun H Q, Wang J L. Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay. Comput Math Appl, 2019, 77(1): 284-301 |
[16] |
Manna K, Chakrabarty S. P. Chronic Hepatitis B infection and HBV DNA-containing capsids: modeling and analysis. Commun Nonlinear Sci Numer Simulat, 2015, 22(1-3): 383-395
doi: 10.1016/j.cnsns.2014.08.036 |
[17] |
Liu S H, Zhang R. On an age-structured Hepatitis B virus infection model with HBV DNA-containing capsids. Bull Malays Math Sci Soc, 2021, 44(3): 1345-1370
doi: 10.1007/s40840-020-01014-6 |
[18] | Manna K. Dynamics of a diffusion-driven HBV infection model with capsids and time delay. Int J Biomath, 2017, 10( 5): 1750062 |
[19] | Guo T, Liu H H, Xu C L, et al. Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate. Discret Contin Dyn Syst Ser B, 2018, 23(10): 4223-4242 |
[20] |
Manna K, Hattaf H. Spatiotemporal dynamics of a generalized HBV infection model with capsids and adaptive immunity. Int J Appl Comput Math, 2019, 5: 65
doi: 10.1007/s40819-019-0651-x |
[21] |
Webb G F. A reaction-diffusion model for a deterministic diffusive epidemic. J Math Anal Appl, 1981, 84(1): 150-161
doi: 10.1016/0022-247X(81)90156-6 |
[22] | Webb G F. Theory of Nonlinear Age-Dependent Population Dynamics. New York: Marcell Dekker Inc, 1985 |
[23] | Protter M H, Weinberger H F. Maximum Principles in Differential Equations. New York: Springer Science & Business Media, 2012 |
[24] |
Wang J L, Wang J. Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population. J Dyn Differ Equ, 2021, 33: 549-575
doi: 10.1007/s10884-019-09820-8 |
[25] | Hale J K. Asymptotic Behavior of Dissipative Systems. Providence: Amer Math Soc, 1988 |
[26] | Hale J K, Lunel S M V. Introduction to Functional Differential Equations. Vol 99. New York:Springer Science & Business Media, 2013 |
[27] |
Smith H L, Zhao X Q. Robust persistence for semidynamical systems. Nonlinear Anal: TMA, 2001, 47(9): 6169-6179
doi: 10.1016/S0362-546X(01)00678-2 |
[1] | Jiang Li,Guijie Lan,Shuwen Zhang,Chunjin Wei. Dynamics Analysis of a Stochastic Glucose-Insulin Model [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1937-1949. |
[2] | Lixiang Feng,Defen Wang. Global Stability of an Epidemic Model with Quarantine and Incomplete Treatment [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1235-1248. |
[3] | Yonghui Zhou. Global Stability of the Nonmonotone Critical Traveling Waves for Reaction Diffusion Equations [J]. Acta mathematica scientia,Series A, 2020, 40(4): 983-992. |
[4] | Xiaojie Jing, Aimin Zhao, Guirong Liu. Global Stability of a Measles Epidemic Model with Partial Immunity and Environmental Transmission [J]. Acta mathematica scientia,Series A, 2019, 39(4): 909-917. |
[5] | Wei Aiju, Zhang Xinjian, Wang Junyi, Li Kezan. Dynamics Analysis of an Ebola Epidemic Model [J]. Acta mathematica scientia,Series A, 2017, 37(3): 577-592. |
[6] | YE Hui, CAI Dong-Han. Global Attractivity in a Periodic Nicholson's Blowflies Model [J]. Acta mathematica scientia,Series A, 2013, 33(6): 1013-1021. |
[7] | LI Yu-Huan, ZHOU Jun, MU Chun-Lai. Stability Analysis for a Predator-Prey System with Nonlocal Delayed Reaction-diffusion Equations [J]. Acta mathematica scientia,Series A, 2012, 32(3): 475-488. |
[8] | CUI Cheng, WANG Xiao, GAO Fei, LIU An-Ping. Global Stability of Periodic Solution and Almost Periodic Solution of Price Cooperating Model with Time Lag [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1718-1729. |
[9] |
Wu Shiliang ;Li Wantong.
Stability and Traveling Fronts in Lotka-Volterra Cooperation Model with Stage Structure [J]. Acta mathematica scientia,Series A, 2008, 28(3): 454-464. |
[10] | Wang Yuquan; Liu Laifu. On the Dynamics of a Food Chain with Monod-Haldane Functional Response [J]. Acta mathematica scientia,Series A, 2007, 27(1): 79-089. |
[11] | Wang Yuquan ;Jing Zhujun. Global Qualitative Analysis of a Food Chain Model [J]. Acta mathematica scientia,Series A, 2006, 26(3): 410-420. |
[12] | CENG Zhi-Gang, LIAO Xiao-Cuan. Global Stability for Neural Networks with Unbouned Time Varying Delays [J]. Acta mathematica scientia,Series A, 2005, 25(5): 621-626. |
[13] | YUAN San-Ling, MA Zhi-En, HAN Mao-An. Global Stability on an SIS Epidemic Model with Time Delays [J]. Acta mathematica scientia,Series A, 2005, 25(3): 349-356. |
[14] | SONG Xin-Yu, XIAO Yan-Ni, CHEN Lan-Sun. Stability and Hopf Bifurcation of an Eco epidemiological Model with Delays [J]. Acta mathematica scientia,Series A, 2005, 25(1): 57-66. |
|