Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (2): 458-480.
Previous Articles Next Articles
Received:
2022-04-29
Revised:
2022-10-19
Online:
2023-04-26
Published:
2023-04-17
Supported by:
CLC Number:
Zhang Mingyu. Global Existence of the Compressible and Radiative Flux with Temperature-Dependent Transport Coefficients[J].Acta mathematica scientia,Series A, 2023, 43(2): 458-480.
[1] | Antontsev S N, Kazhikhov A V, Monakhov V N. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. New York: Elsevier, 1990 |
[2] |
Chen C Q. Global solutions to the compressible Navier-Stokes matrixs for a reacting mixture of nonlinear. SIAM J Math Anal, 1992, 23: 609-634
doi: 10.1137/0523031 |
[3] |
Ducomet B. A model of thermal dissipation for a one-dimensional viscous reactive and radiative. Math Methods Appl Sci, 1999, 22: 1323-1349
doi: 10.1002/(ISSN)1099-1476 |
[4] | Jiang J, Zheng S M. Global solvability and asymptotic behavior of a free boundary problem for the one-dimensional viscous radiative and reactive gas. J Math Phy, 2012, 53 |
[5] |
Jiang S. On initial boundary value problems for a viscous heat-conducting one-dimensional real gas. J Differential Equations, 1994, 110: 157-181
doi: 10.1006/jdeq.1994.1064 |
[6] | Kanel J I. A model system of matrixs for the one-dimensional motion of a gas. Differ Uravn, 1968, 4: 721-734 |
[7] |
Kawohl B. Global existence of large solutions to initial boundary value problems for the matrixs of one- dimensional motion of viscous polytropic gases. J Differential Equations, 1985, 58: 76-103
doi: 10.1016/0022-0396(85)90023-3 |
[8] | Kawashima S, Nishida T. Global solutions to the initial value problem for the matrix of one-dimensional motion of viscous polytropic gases. J Math Kyoto Univ, 1981, 21: 825-837 |
[9] | Kazhikhov A V. To a theory of boundary value problems for matrix of one-dimensional nonstationary motion of viscous heat-conduction gases. Boundary value problems, 1981, 50: 37-62 |
[10] | Kazhikhov A V. Sur la solubilité global des problémes monodimensionnels aux valeurs initinales-limités pour les équations d'un gaz visqueux et calorifére. C R Acad Sci, Paris, Ser A, 1997, 284: 317-320 |
[11] |
Kazhikhov A V, Shelukhin V V. Unique global solutions with respect to time of the initial-boundary value problems for one-dimensional matrixs of a viscous gas. J Appl Math Mech, 1977, 41: 273-282
doi: 10.1016/0021-8928(77)90011-9 |
[12] |
Liao Y K, Zhao H J. Global solutions to one-dimensional matrixs for a self-gravitating viscous radiative and reactive gas with density-dependent viscosity. Commun Math Sci, 2017, 15: 1423-1456
doi: 10.4310/CMS.2017.v15.n5.a10 |
[13] |
Nagasawa T. On the one-dimensional motion of the polytropic ideal gas non-fixed on the boundary. J differential Equations, 1986, 65: 49-67
doi: 10.1016/0022-0396(86)90041-0 |
[14] |
Nagasawa T. Global asymptotics of the outer pressure problem with free boundary. Japan J Appl Math, 1988, 5: 205-224
doi: 10.1007/BF03167873 |
[15] |
Nagasawa T. On the outer pressure problem of the one-dimensional polytropic ideal gas. Japan J Appl Math, 1988, 5: 53-85
doi: 10.1007/BF03167901 |
[16] | Qin Y M. Nonlinear parabolic-hyperbolic coupled systems and their attractors. Basel: Birkhäuser, 2008 |
[17] |
Qin Y M, Hu G L, Wang T G, Huang L. Remarks on global smooth solutions to a 1D self-gravitating viscous radiative and reactive gas. J Math Anal Appl, 2013, 408: 19-26
doi: 10.1016/j.jmaa.2013.05.061 |
[18] |
Qin Y M, Huang L. On the 1D viscous reactive and radiative gas with the first-order Arrhenius kinetics. Math Meth Appl Sci, 2019, 42: 5969-5998
doi: 10.1002/mma.v42.18 |
[19] |
Qin Y M, Liu X, Yang X. Global existence and exponential stability for a 1D compressible and radiative MHD flow. J Differential Equations, 2012, 253: 1439-1488
doi: 10.1016/j.jde.2012.05.003 |
[20] |
Sun Y, Zhang J W, Zhao X K. Nonlinear exponential stability for the compressible Navier-Stokes matrixs with temperature-dependent transport coefficients. J Differential Equations, 2021, 286: 676-709
doi: 10.1016/j.jde.2021.03.044 |
[21] |
Tani A. On the first initial-boundary value problem of compressible viscous fluid motion. Publ Res Inst Math Sci, 1977, 13: 193-253
doi: 10.2977/prims/1195190106 |
[22] |
Umehara M, Tani A. Global solution to the one-dimensional matrixs for a self-gravitating viscous radiative and reactive gas. J Differential Equations, 2007, 234: 439-463
doi: 10.1016/j.jde.2006.09.023 |
[23] |
Wang T, Zhao H J. One-dimensional compressible heat-conducting gas with temperature-dependent viscosity. Math Models Methods Appl Sci, 2016, 26: 2237-2275
doi: 10.1142/S0218202516500524 |
[24] |
Zhang J W, Xie F. Global solutions for a one-dimensional model problem in thermally radiative magnetohydrodynamics. J Differential Equations, 2008, 245: 1853-1882
doi: 10.1016/j.jde.2008.07.010 |
[1] | Xiao Su,Shubin Wang. The Cauchy Problem for the Forth Order p-Generalized Benney-Luke Equation [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1744-1753. |
[2] | Yu Pei. Decay of Weak Solutions to the Multi-Dimensional Burgers' Equation with Fractional Diffusion [J]. Acta mathematica scientia,Series A, 2016, 36(2): 340-352. |
[3] | Lei Qian, Li Ning, Yang Han. Blow Up and Asymptotic Behavior in the Beam Equation [J]. Acta mathematica scientia,Series A, 2015, 35(4): 738-747. |
[4] | ZHU Xu-Sheng, LI Fang-E. The Global Solutions of the Compressible Euler Equations With Nonlinear Damping in 3-Dimensions [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1111-1122. |
[5] | SHU Zheng, LIN Li-Ban. Characteristics of Quantum Nonthermal Radiation and the \=Range of the Radiation Particles for a Black Hole \=with Charge and Magnetic Dipole Moment [J]. Acta mathematica scientia,Series A, 2004, 4(5): 578-582. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 117
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 86
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|