该文在弱双代数$H$上给出了扭曲积$(H^\sigma,\cdot_\sigma)$成为弱双代数的充分必要条件.设$[B, H, \tau]$是一个弱斜配对, 并且$\tau$可逆,则在某个条件下弱双交叉积$B\bowtie_\tau H$是一个弱双代数. 如果$(B,H, \sigma)$是弱相关Long双代数, 并且$\sigma$可逆,则弱双交叉积$B^{OP}\bowtie_\sigma H$可以被构造. 它的乘法是:
$(x\otimes h)(y\otimes g)=\Sigma\sigma(y_1, h_1)y_2x\otimes h_2g\sigma^{-1}(y_3, h_3),$ 特别地, 如果$(B, H,\sigma)$是相关Long双代数, 则$(B^{OP \bowtie_\sigma H,\beta)$是Long双代数当且仅当对任意$b, d\in B^{OP}; g, \ell\in H$,
$\Sigma\sigma^{-1}(b, g_2\ell)\sigma(d, g_1)=\Sigma\sigma^{-1}(b,
\ell g_1)\sigma(d, g_2),$ 其中$B$为$H$的子Hopf代数,$\beta$定义为$\beta(b\bowtie_\sigma h\otimes c\bowtie_\sigma g)=\varepsilon_H(h)\varepsilon_{B^{OP}}(c)\sigma^{-1}(b, g).$ 对于Sweedler 4维Hopf代数$H$, 作者给出一个例子说明:
此弱双交叉积$(B^{OP}\bowtie_\sigma H, \beta)$不仅是一个Long双代数,
而且是一个非可换和非余可换的8维Hopf代数. 最后, 设$B,H$都是弱双代数, $\sigma: B\otimes H\rightarrow k$是一个线性映射, 作者给出了$(B,\sigma,\leftharpoonup, \Delta_B)$是弱相关右$(H, B)$ -重模代数的充分必要条件.